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PREFACE 
 
 
 
 
“Thanks – This was the best course that I have ever taken!”  This is the type of 
reaction we can get out of students who have come to expect electric machines 
courses to be staid, boring, and old-fashioned. 
 
In today’s world of computers, wireless communication, and the Internet, is there 
a place for a course on electric drives in the EE curriculum?  That’s a rhetorical 
question; the answer is obviously Yes!  However, the courses on electric 
machines and drives have not changed in decades.  Therefore, we must carefully 
design a new course in order to prepare students for using and developing motion 
control systems in today’s industry.  This course must be based on fundamentals 
which are also essential to advanced courses in this field and to more R&D 
oriented careers. 
 
OPPORTUNITIES.  Electric drives offer enormous potential for energy 
conservation.  A recent study by the United States Department of Energy points 
out that conservation methods using electric drives could annually save energy 
equal to the yearly electricity use in the entire state of New York!  Transportation 
is another important application of electric drives.  Hybrid-electric vehicles using 
internal combustion engines assisted by electric drives have been commercialized.  
Intense research in fuel cells may eventually make pure electric vehicles viable.  
Almost all hydraulic drives, from conventional automobiles to ships to airplanes, 
are under scrutiny for replacement by electric drives.  Also, electric drives for 
motion control are essential to the automation of factories for higher productivity. 
 
We should seize this opportunity and train students to meet the real needs of 
industry, based on solid theoretical foundations.  Experience has shown that a 
properly designed course benefits a broad range of students not only from 
electrical engineering but also from other disciplines such as mechanical 
engineering. 
 
THE INTEGRATIVE APPROACH.  This book follows an integrative approach, 
which requires the minimum prerequisites of junior-level course(s) in circuits and 
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systems and a course in electromagnetic field theory (which students may have 
taken in physics).  This integrative approach allows us to examine in a single 
semester all of the subsystems that make up electric drives: electric machines, 
power-electronics-based converters, mechanical system requirements, feedback 
controller design, and the interaction of drives with the utility grid. 
 
The hallmark of the approach used in this book is as follows: 

• Stick to the basic principles in their simplest form. 
• Cover the topics in a sequence (and depth) that maintains a high level of 

interest. 
• Never underestimate students’ capabilities – they have passed much 

harder courses in getting here. 
 
ABOUT THIS BOOK.  First, what this book is not: it is not intended to provide a 
superficial overview of topics in power systems, electric drives, and power 
electronics in a single course.  Rather, it provides a very fundamental treatment of 
a broad range of topics, always keeping an eye towards applications.  Out-dated 
techniques are omitted to save time and avoid confusion.  This book is based on 
years of research in (yes, in) education, with the help of many colleagues. 
 
This research has led to 1) the building-block approach for describing switch-
mode power electronics used in modern-day drives and 2) making the space-
vector theory approachable to undergraduates – as easy as using phasors (in fact 
easier, by providing a physical meaning to space-vector representations).  The use 
of space vectors reveals the physical basis on which ac machines operate, thus 
allowing a clear understanding of how they ought to be controlled for optimum 
performance.  An important benefit of this approach is the continuity between this 
introductory course and more advanced (mathematically-based) courses. 
 
HOMEWORK PROBLEMS.  A broad range of in-text examples and the 
homework problems at the end of each chapter are designed to reinforce the 
fundamentals in the context of applications.  At the end of each chapter, a 
summary is presented in the form of a large number of conceptual review 
questions. 
 
SOLUTIONS MANUAL.  A solutions manual with complete solutions to 
numerical problems (excluding those which require computer simulations) is 
provided, as a matter of policy, only to instructors. 
 
SUGGESTED TOPICS AND THE NUMBER OF LECTURE HOURS.  This 
book is intended to be a textbook for a one-semester course.  However, to cover 
the entire material in detail will require approximately 60 lecture hours (55 
minutes each), more than are available in a semester.  An instructor, based on 
his/her preference and the students’ background, can select the topics and the 
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extent of their coverage.  Just as a suggestion, I have indicated the range of the 
number of lectures for each chapter (zero implies that this topic can be skipped or 
taught out-of-sequence, without impeding the flow).  Of course, an instructor may 
decide to augment any topic with additional course notes. 
 

Chapter     Number of Lectures 
1. Introduction to Electric Drive Systems    1-2 
2. Understanding Mechanical System Requirements   1-4 
3. Review of Electric Circuits      0-2 
4. Basic Understanding of Switch-Mode Power Electronics  3-5 
5. Magnetic Circuits       4-6 
6. Basic Principles of Electro-Mechanical Energy Conversion  3-4 
7. DC-Motor and ECM Drives      0-7 
8. Feedback Controller Design      0-3 
9. Introduction to AC Machines and Space Vectors   4-6 
10. Sinusoidal PMAC Drives and Synchronous Machines  2-4 
11. Induction Machines: Steady State Analysis    5-7 
12. Adjustable-Speed Induction-Motor Drives    2-4 
13. Vector Control of Induction-Motor Drives    0-2 
14. Reluctance Drives       0-3 
15. Energy Efficiency and the Economics of Drives   0-2 
16. Power Quality Issues       0-5 
17. Sensors, ASICs, and Micro-Controllers    0-1 

 
FEEDBACK NEEDED.  Any new approach needs nurturing.  One thing I am 
sure of is that this book can be vastly improved, and that is what I intend to do on 
a periodic basis.  I would be very glad to receive your comments and constructive 
criticism in this regard. 
 
Ned Mohan 
Email: mnpere@aol.com 
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CONVENTION OF SYMBOLS 
 
 
 
1. Variables that are functions of time v , i  or ( )v t , ( )i t  

2. Peak values (of time-varying variables) V̂ , Î  
3. RMS values (of item 1); also average values in dc steady state V , I  
4. Phasors ˆ

vV V θ= ∠ , ˆ
iI I θ= ∠  

5. Space vectors* ( )H t
���

, ( )B t
��

, ( )F t
��

, ˆ( ) vv t V θ= ∠
�

, ˆ( ) ii t I θ= ∠
�

 
6. Average values (used for average modeling) ( )v t , ( )i t  
 
* Note that both phasors and space vectors, two distinct quantities, have their 

peak values indicated by “^”. 
 
Subscripts: 
 
Phases  a, b, c or A, B 
Stator  s 
Rotor  r 
Armature a 
Magnetizing m 
Mechanical m  (as in mθ  or mω ) 

Leakage �  
Field  f 
Harmonic h 
dc-side  d 
Control c 
 
Symbols: 
 
p   Number of poles ( 2p ≥ , even number) 

sN   Total number of turns in each phase of the stator winding  

 
        (Continues to next page.) 
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Ideal Transformer: 

 
It is a hypothetical device that represents transformation of instantaneous 
quantities (ac or dc) from one side to the other in the following manner, based on 
the turns-ratio ( 2 1/N N ): 
 

 2 2

1 1

v N

v N
=  

and 

1 2

2 1

i N

i N
= . 

 
Therefore,  
 
 1 1 2 2v i v i= . 
 
The above relationships also apply to dc voltages and currents represented by 
uppercase letters V  and I , and to slowly varying average voltages and currents 
represented by ( )v t  and ( )i t . 
 
 
 

+ +

− −

1v 2v

1i 2i

1N 2N
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CHAPTER  1 

 

INTRODUCTION TO  
ELECTRIC DRIVE  
SYSTEMS 
 

 
Spurred by advances in power electronics, adjustable-speed electric drives now 

offer great opportunities in a plethora of applications: pumps and compressors to 

save energy, precision motion control in automated factories, and wind-electric 

systems to generate electricity, to name a few.  A recent example is the 

commercialization of hybrid-electric vehicles [1].  Figure 1-1 shows the 

photograph of a hybrid arrangement in which the outputs of the internal-

combustion (IC) engine and the electric drive are mechanically added in parallel 

to drive the wheels. Compared to vehicles powered solely by gasoline, these 

hybrids reduce fuel consumption by more than fifty percent and emit far fewer 

pollutants. 

Figure 1-1 Photograph of a hybrid-electric vehicle. 
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1-1 HISTORY 
 

Electric machines have now been in existence for over a century.  All of us are 

familiar with the basic function of electric motors: to drive mechanical loads by 

converting electrical energy.  In the absence of any control, electric motors 

operate at essentially a constant speed.  For example, when the compressor-motor 

in a refrigerator turns on, it runs at a constant speed.   

 

Traditionally, motors were operated uncontrolled, running at constant speeds, 

even in applications where efficient control over their speed could be very 

advantageous.  For example, consider the process industry (like oil refineries and 

chemical factories) where the flow rates of gases and fluids often need to be 

controlled.  As Fig. 1-2a illustrates, in a pump driven at a constant speed, a 

throttling valve controls the flow rate.  Mechanisms such as throttling valves are 

generally more complicated to implement in automated processes and waste large 

amounts of energy.  In the process industry today, electronically controlled 

adjustable-speed drives (ASDs), shown in Fig. 1-2b, control the pump speed to 

match the flow requirement.  Systems with adjustable-speed drives are much 

easier to automate, and offer much higher energy efficiency and lower 

maintenance than the traditional systems with throttling valves. 

 

These improvements are not limited to the process industry.  Electric drives for 

speed and position control are increasingly being used in a variety of 

manufacturing, heating, ventilating and air conditioning (HVAC), and 

transportation systems. 

 

 

(a) (b) 

Figure 1-2 Traditional and ASD based flow control systems. 
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1-2 WHAT IS AN ELECTRIC-MOTOR DRIVE? 
 

Figure 1-3 shows the block diagram of an electric-motor drive, or for short, an 

electric drive.  In response to an input command, electric drives efficiently control 

the speed and/or the position of the mechanical load, thus eliminating the need for 

a throttling valve like the one shown in Fig. 1-2a.  The controller, by comparing 

the input command for speed and/or position with the actual values measured 

through sensors, provides appropriate control signals to the power-processing unit 

(PPU) consisting of power semiconductor devices.   

 

 
As Fig. 1-3 shows, the power-processing unit gets its power from the utility 

source with single-phase or three-phase sinusoidal voltages of a fixed frequency 

and constant amplitude.  The power-processing unit, in response to the control 

inputs, efficiently converts these fixed-form input voltages into an output of the 

appropriate form (in frequency, amplitude, and the number of phases) that is 

optimally suited for operating the motor.   

 

The input command to the electric drive in Fig. 1-3 may come from a process 

computer, which considers the objectives of the overall process and issues a 

command to control the mechanical load.  However, in general-purpose 

Figure 1-3 Block diagram of an electric drive system. 
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applications, electric drives operate in an open-loop manner without any 

feedback. 

 

Throughout this text, we will use the term electric-motor drive (motor drive or 

drive for short) to imply the combination of blocks in the box drawn by dotted 

lines in Fig. 1-3.  We will examine all of these blocks in subsequent chapters. 

 

1-3 FACTORS RESPONSIBLE FOR THE GROWTH OF ELECTRIC 
DRIVES 

 

Technical Advancements.  Controllers used in electric drives (see Fig. 1-3) have 

benefited from revolutionary advances in microelectronic methods, which have 

resulted in powerful linear integrated circuits and digital signal processors [2].  

These advances in semiconductor fabrication technology have also made it 

possible to significantly improve voltage and current handling capabilities, as well 

as the switching speeds of power semiconductor devices, which make up the 

power-processing unit of Fig. 1-3. 

 

Market Needs.  Figure 1-4 shows the estimated world market of adjustable-speed 

drives, a 20 billion dollar industry in 1997.  This market is growing at a healthy 

rate [3] as users discover the benefits of operating motors at variable speeds.  

These benefits include improved process control, reduction in energy usage, and 

less maintenance.   

 

The world market for electric drives would be significantly impacted by large-

scale opportunities for harnessing wind energy.  There is also a large potential for 

applications in the developing world, where the growth rates are the highest. 

Figure 1-4 Estimated world market of adjustable speed drives. 
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Applications of electric drives in the United States are of particular importance.  

The per-capita energy consumption in the United States is almost twice that in 

Europe, but the electric drive market in 1997, as shown in Fig. 1-4, was less than 

one-half.  This deficit, due to a relatively low cost of energy in the United States, 

represents a tremendous opportunity for application of electric drives.  

 

1-4 TYPICAL APPLICATIONS OF ELECTRIC DRIVES 
 

Electric drives are increasingly being used in most sectors of the economy.  

Figure 1-5 shows that electric drives cover an extremely large range of power and 

speed - up to 100 MW in power and up to 80,000 rpm in speed.   

 

Due to the power-processing unit, drives are not limited in speeds, unlike line-fed 

motors that are limited to 3,600 rpm with a 60-Hz supply (3,000 rpm with a 50-

Hz supply).  A large majority of applications of drives are in a low to medium 

power range, from a fractional kW to several hundred kW.  Some of these 

application areas are listed below: 

 

• Process Industry: agitators, pumps, fans, and compressors 

• Machining: planers, winches, calendars, chippers, drill presses, sanders, 

saws, extruders, feeders, grinders, mills, and presses 

Figure 1-5 Power and Speed range of electric drives. 
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• Heating, Ventilating and Air Conditioning: blowers, fans, and 

compressors 

• Paper and Steel Industry: hoists, and rollers 

• Transportation: elevators, trains, and automobiles 

• Textile: looms 

• Packaging: shears 

• Food: conveyors, and fans 

• Agriculture: dryer fans, blowers, and conveyors 

• Oil, Gas, and Mining: compressors, pumps, cranes, and shovels 

• Residential: heat pumps, air conditioners, freezers, appliances, and 

washing machines 

 

In the following sections, we will look at a few important applications of electric 

drives in energy conservation, wind-electric generation, and electric 

transportation. 

 

1-4-1 Role of Drives in Energy Conservation [4] 
 

It is perhaps not obvious how electric drives can reduce energy consumption in 

many applications.  Electric costs are expected to continue their upward trend, 

which makes it possible to justify the initial investment in replacing constant-

speed motors with adjustable speed electric drives, solely on the basis of reducing 

energy expenditure (see Chapter 15).  The environmental impact of energy 

conservation, in reducing global warming and acid rain, is also of vital importance 

[5]. 

 

To arrive at an estimate of the potential role of electric drives in energy 

conservation, consider that the motor-driven systems in the United States are 

responsible for over 57% of all electric power generated and 20% of all the 

energy consumed.  The United States Department of Energy estimates that if 

constant speed, line-fed motors in pump and compressor systems were to be 

replaced by adjustable-speed drives, the energy efficiency would improve by as 

much as 20%.  This improved energy efficiency amounts to huge potential 

savings (see homework problem 1-1).  In fact, the potential yearly energy savings 

RAJA MUNUSAMY
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would be approximately equal to the annual electricity use in the state of New 

York.  Some energy-conservation applications are described as follows. 

 

1-4-1-1   Heat Pumps and Air Conditioners [6] 
 

Conventional air conditioners cool buildings by extracting energy from inside the 

building and transferring it to the atmosphere outside.  Heat pumps, in addition to 

the air-conditioning mode, can also heat buildings in winter by extracting energy 

from outside and transferring it inside.  The use of heat pumps for heating and 

cooling is on the rise; they are now employed in roughly one out of every three 

new homes constructed in the United States. 

 

In conventional systems, the building temperature is controlled by on/off cycling 

of the compressor motor by comparing the building temperature with the 

thermostat setting.  After being off, when the compressor motor turns on, the 

compressor output builds up slowly (due to refrigerant migration during the off 

period) while the motor immediately begins to draw full power.  This cyclic loss 

(every time the motor turns on) between the ideal and the actual values of the 

compressor output, as shown in Fig. 1-6, can be eliminated by running the 

compressor continuously at a speed at which its output matches the thermal load 

of the building.  Compared to conventional systems, compressors driven by 

adjustable speed drives reduce power consumption by as much as 30 percent. 

 

1-4-1-2   Pumps, Blowers, and Fans 
 

To understand the savings in energy consumption, let us compare the two systems 

shown in Fig. 1-2.  In Fig. 1-7, curve A shows the full-speed pump characteristic, 

that is, the pressure (or head) generated by a pump, driven at its full speed, as a  

ideal loss actual

Compressor

Output

ON OFF

Figure 1-6 Heat pump operation with line-fed motors. 
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function of flow rate.  With the throttling valve fully open, curve B shows the 

unthrottled system characteristic, that is, the pressure required as a function of 

flow rate, to circulate fluid or gas by overcoming the static potential (if any) and 

friction.  The full flow rate 1Q  is given by the intersection of the unthrottled 

system curve B with the pump curve A. Now consider that a reduced flow rate Q2 

is desired, which requires a pressure H2 as seen from the unthrottled system curve 

B.  Below, we will consider two ways of achieving this reduced flow rate. 

 

With a constant-speed motor as in Fig. 1-2a, the throttling valve is partially 

closed, which requires additional pressure to be overcome by the pump, such that 

the throttled system curve C intersects with the full-speed pump curve A at the 

flow rate Q2.  The power loss in the throttling valve is proportional to 2Q  times 

∆H.  Due to this power loss, the reduction in the energy efficiency will depend on 

the reduced flow-rate intervals, compared to the duration of unthrottled operation. 

 

The power loss across the throttling valve can be eliminated by means of an 

adjustable-speed drive. The pump speed is reduced such that the reduced-speed 

pump curve D in Fig. 1-7 intersects with the unthrottled system curve B at the 

desired flow rate 2Q . 

 

Figure 1-7 Typical pump and system curves. 
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Similarly, in blower applications, the power consumption can be substantially 

lowered, as plotted in Fig. 1-8, by reducing the blower speed by means of an 

adjustable speed drive to decrease flow rates, rather than using outlet dampers or 

inlet vanes. The percentage reduction in power consumption depends on the flow-

rate profile (see homework problem 1-5). 

 

 
Electric drives can be beneficially used in almost all pumps, compressors, and 

blowers employed in air handling systems, process industry, and the generating 

plants of electric utilities.  There are many documented examples where energy 

savings alone have paid for the cost of conversion (from line-fed motors to 

electric-drive systems) within six months of operation.  Of course, this advantage 

of electric drives is made possible by the ability to control motor speeds in an 

energy efficient manner, as discussed in the subsequent chapters. 

 

1-4-2 Harnessing Wind Energy 
 

Electric drives also play a significant role in power generation from renewable 

energy sources, such as wind and small hydro.  The block diagram for a wind-

electric system is shown in Fig. 1-9, where the variable-frequency ac produced by 

the wind-turbine driven generator is interfaced with the utility system through a 

power-processing unit.  By letting the turbine speed vary with the wind speed, it is 

possible to recover a higher amount of energy compared to systems where the 

Figure 1-8 Power consumption in a blower. 
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turbine essentially rotates at a constant speed due to the generator output being 

directly connected to the utility grid [7]. 

 

 

1-4-3 Electric Transportation 
 

Electric transportation is widely used in many countries.  Magnetically-levitated 

trains are being experimented with in Japan and Germany.  High-speed electric 

trains are also presently being evaluated in the United States for mass 

transportation in northeastern and southwestern corridors. 

 

Another important application of electric drives is in electric vehicles and hybrid-

electric vehicles.  The main virtue of electric vehicles (especially to large 

metropolitan areas) is that they emit no pollutants.  However, electric vehicles 

must wait for suitable batteries, fuel cells, or flywheels to be developed before the 

average motorist accepts them.  On the other hand, hybrid-electric vehicles are 

already commercialized [1]. 

 

There are so many new applications of electric drives in conventional automobiles 

that there are serious proposals to raise the battery voltage from its present value 

of 12 V in order to keep current levels manageable [8].  Also, there is an ongoing 

attempt to replace hydraulic drives with electric drives in airplanes and ships. 

 

1-5 THE MULTI-DISCIPLINARY NATURE OF DRIVE SYSTEMS 
 

The block diagram of Fig. 1-3 points to various fields, as shown in Fig. 1-10, 

which are essential to electric drives: electric machine theory, power electronics, 

analog and digital control theory, real-time application of digital controllers, 

mechanical system modeling, and interaction with electric power systems.  A 

Figure 1-9 Electric drive for wind generator. 
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brief description of each of the fields shown in Fig. 1-10 is provided in the 

following subsections. 

 

 

1-5-1 Theory of Electric Machines 
 

For achieving the desired motion, it is necessary to control electric motors 

appropriately.  This requires a thorough understanding of the operating principles 

of various commonly used motors such as dc, synchronous, induction and stepper 

motors.  The emphasis in an electric drives course needs to be different than that 

in traditional electric machines courses, which are oriented towards design and 

application of line-fed machines. 

 

1-5-2 Power Electronics 
 

The discipline related to the power-processing unit in Fig. 1-3 is often referred to 

as power electronics.  Voltages and currents from a fixed form (in frequency and 

magnitude) must be converted to the adjustable form best suited to the motor.  It 

is important that the conversion take place at a high energy efficiency, which is 

realized by operating power semiconductor devices as switches. 

 

Figure 1-10 Multi-disciplinary nature of electric drives. 
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Today, power processing is being simplified by means of "Smart Power" devices, 

where power semiconductor switches are integrated with their protection and 

gate-drive circuits into a single module.  Thus, the logic-level signals (such as 

those supplied by a digital signal processor) can directly control high power 

switches in the PPU.  Such power-integrated modules are available with voltage 

handling capability approaching 4 kilovolts and current handling capability in 

excess of 1,000 amperes.  Paralleling such modules allows even higher current 

handling capabilities.   

 

The progress in this field has made a dramatic impact on power-processing units.  

Figure 1-11a shows the reduction in size and weight, while Fig. 1-11b shows a 

substantial increase in the number of functions that can be performed [3]. 

 

 

1-5-3 Control Theory 
 

In the majority of applications, the speed and position of drives need not be 

controlled precisely.  However, there are an increasing number of applications, for 

example in robotics for automated factories, where accurate control of torque, 

speed, and position are crucial.  Such control is accomplished by feeding back the 

measured quantities, and by comparing them with their desired values, in order to 

achieve a fast and accurate control. 

 

In most motion control applications, it is sufficient to use a simple proportional-

integral (PI) control as discussed in Chapter 8.  The task of designing and 

0

20

40

60

80

100

120

1968 1988 1998

Year

%

Size (volume)

Weight

0

50

100

150

200

19
68

19
83

19
88

19
93

19
98
Year

R
el

at
iv

e 
u

n
it

Components

Functions

(b) (a) 
Figure 1-11  Evolution of a 4kW Danfoss VLTR power processing unit [3]. 
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analyzing PI-type controllers is made easy due to the availability of powerful 

simulation tools such as PSpice™.   

 

1-5-4 Real-Time Control Using DSPs 
 

All modern electric drives use microprocessors and digital signal processors 

(DSPs) for flexibility of control, fault diagnosis and communication with the host 

computer and with other process computers.  Use of 8-bit microprocessors is 

being replaced by 16-bit and even 32-bit microprocessors.  Digital signal 

processors are used for real-time control in applications which demand high 

performance or where a slight gain in the system efficiency more than pays for the 

additional cost of a sophisticated control. 

 

1-5-5 Mechanical System Modeling 
 

Specifications of electric drives depend on the torque and speed requirements of 

the mechanical loads.  Therefore, it is often necessary to model mechanical loads.  

Rather than considering the mechanical load and the electric drive as two separate 

sub-systems, it is preferable to consider them together in the design process.  This 

design philosophy is at the heart of Mechatronics [9]. 

 

1-5-6 Sensors 
 

As shown in the block diagram of electric drives in Fig. 1-3, voltage, current, 

speed and position measurements may be required.  For thermal protection, the 

temperature needs to be sensed. 

 

1-5-7 Interactions of Drives with the Utility Grid 
 

Unlike line-fed electric motors, electric motors in drives are supplied through a 

power electronic interface (see Fig. 1-3).  Therefore, unless corrective action is 

taken, electric drives draw currents from the utility that are distorted (non-

sinusoidal) in wave shape.  This distortion in line currents interferes with the 

utility system, degrading its power quality by distorting the voltages.  Available 

technical solutions make the drive interaction with the utility harmonious, even 
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more so than line-fed motors.  The sensitivity of drives to power system 

disturbances such as sags, swells, and transient over-voltages should also be 

considered.  Again, solutions are available to reduce or eliminate the effects of 

these disturbances.  These power-quality related issues are discussed in Chapter 

16. 

 

1-6 STRUCTURE OF THE TEXTBOOK 
 

Chapter 1 has introduced the roles and applications of electric drives.  Chapter 2 

deals with the modeling of mechanical systems coupled to electric drives, as well 

as how to determine drive specifications for various types of loads.  Chapter 3 

reviews linear electric circuits.  An introduction to power-processing units is 

presented in Chapter 4.  

 

Magnetic circuits, including transformers, are discussed in Chapter 5.  Chapter 6 

explains the basic principles of electromagnetic energy conversion. 

 

Chapter 7 describes dc-motor drives.  Although the share of dc-motor drives in 

new applications is declining, their use is still widespread.  Another reason for 

studying dc-motor drives is that ac-motor drives are controlled to emulate their 

performance.  The feedback controller design for drives (using dc drives as an 

example) is presented in Chapter 8. 

 

As a background to the discussion of ac motor drives, the rotating fields in ac 

machines are described in Chapter 9 by means of space vectors.  Using the space 

vector theory, the sinusoidal waveform PMAC motor drives are discussed in 

Chapter 10.  Chapter 11 introduces induction motors and focuses on their basic 

principles of operation in steady state.  A concise but comprehensive discussion 

of controlling speed with induction-motor drives is provided in Chapter 12.  

Position control using induction motors requires field-oriented control, whose 

physical understanding is provided in Chapter 13. 

 

The reluctance drives, including stepper-motors and switched-reluctance drives, 

are explained in Chapter 14. 
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Loss considerations and various techniques to improve energy efficiency in drives 

are discussed in Chapter 15.  The interactions between the drives and the utility, 

in terms of power quality, are the subject of Chapter 16.  Finally, ancillary issues 

such as sensors and motor-control ICs are briefly described in Chapter 17. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. What is an electric drive?  Draw the block diagram and explain the roles of its 

various components. 

2. What has been the traditional approach to controlling flow rate in the process 

industry?  What are the major disadvantages which can be overcome by using 

adjustable speed drives? 

3. What are the factors responsible for the growth of the adjustable-speed drive 

market? 

4. How does an air conditioner work?  (Consult a handbook such as [10].) 

5. How does a heat pump work? 

6. How do ASDs save energy in air conditioning and heat pump systems? 

7. What is the role of ASDs in industrial systems? 

8. There are proposals to store energy in flywheels for load leveling in utility 

systems.  During the off-peak period for energy demand at night, these 

flywheels are charged to high speeds.  At peak periods during the day, this 

energy is supplied back to the utility.  How would ASDs play a role in this 

scheme? 

9. What is the role of electric drives in electric transportation systems of various 

types? 

10. List a few specific examples from the applications mentioned in section 1-4 

that you are personally familiar with. 

11. What are the different disciplines that make up the study and design of 

electric-drive systems? 
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PROBLEMS 
 

1-1 A U.S. Department of Energy report estimates that over 100 billion 

kWh/year can be saved in the United States by various energy 

conservation techniques applied to the pump-driven systems. Calculate (a) 

how many 1000-MW generating plants running constantly supply this 

wasted energy and (b) the annual savings in dollars if the cost of 

electricity is 0.10 $/kWh. 

1-2 Visit your local machine-tool shop and make a list of various electric drive 

types, applications, and speed/torque ranges. 

1-3 Repeat problem 1-2 for an automobile. 
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1-4 Repeat problem 1-2 for household appliances. 

1-5 In a process, a blower is used with the flow-rate profile shown in Fig. P1-

5.  Using the information in Fig 1-8, estimate the percentage reduction in 

power consumption resulting from using an adjustable-speed drive rather 

than a system with (a) an outlet damper and (b) an inlet vane. 

 

 

Figure P1-5 Flow rate profile of the blower. 
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CHAPTER  2 
 

UNDERSTANDING 
MECHANICAL SYSTEM 
REQUIREMENTS FOR 
ELECTRIC DRIVES 
 
 
 

2-1 INTRODUCTION 
 

Electric drives must satisfy the requirements of torque and speed imposed by 

mechanical loads connected to them.  The load in Fig. 2-1, for example, may 

require a trapezoidal profile for the angular speed, as a function of time.  In this 

chapter, we will briefly review the basic principles of mechanics for 

understanding the requirements imposed by mechanical systems on electric 

drives.  This understanding is necessary for selecting an appropriate electric drive 

for a given application. 

Load
Electric
Motor
Drive

(b)(a) Period = 4s

( )L rad / sω

t(sec)0

100

21 3 4 5 6 7

Figure 2-1 (a) Electric drive system; (b) example of load-speed profile requirement. 
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2-2 SYSTEMS WITH LINEAR MOTION  
 

In Fig. 2-2a, a load of a constant mass M  is acted upon by an external force ef  

that causes it to move in the linear direction x at a speed /u dx dt= .  This 

movement is opposed by the load, represented by a force .Lf   The linear 

momentum associated with the mass is defined as M  times u .  As shown in Fig. 

2-2b, in accordance with the Newton’s Law of Motion, the net force 

( )M e Lf f f= −  equals the rate of change of momentum, which causes the mass to 

accelerate: 

 

 ( )M

d du
f Mu M Ma

dt dt
= = =       (2-1) 

 

where a  is the acceleration in 2/m s , which from Eq. 2-1 is 

 

 Mdu f
a

dt M
= =          (2-2) 

 

In MKS units, a net force of 1 Newton (or 1 N), acting on a constant mass of 1 kg 

results in an acceleration of 1 2/m s .  Integrating the acceleration with respect to 

time, we can calculate the speed as 

 

 
0

( ) (0) ( )
t

u t u a dτ τ= + ⋅∫       (2-3) 

 

and, integrating the speed with respect to time, we can calculate the position as 

 

ef Lf

x

M Mf

x

M

(b)(a)

Figure 2-2 Motion of a mass M due to action of forces.       
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0

( ) (0) ( )
t

x t x u dτ τ= + ⋅∫       (2-4) 

 

where τ  is a variable of integration. 

 

The differential work dW done by the mechanism supplying the force ef  is 

 

 e edW f dx=         (2-5) 

 

Power is the time-rate at which the work is done.  Therefore, differentiating both 

sides of Eq. 2-5 with respect to time t , and assuming that the force ef  remains 

constant, the power supplied by the mechanism exerting the force ef  is 

 

 ( ) e
e e e

dW dx
p t f f u

dt dt
= = =       (2-6) 

 

It takes a finite amount of energy to bring a mass to a speed from rest.  Therefore, 

a moving mass has stored kinetic energy that can be recovered.  Note that in the 

system of Fig. 2-2, the net force ( )M e Lf f f= − is responsible for accelerating the 

mass.  Therefore, assuming that Mf  remains constant, the net power ( )Mp t going 

into accelerating the mass can be calculated by replacing ef  in Eq. 2-6 with Mf : 

 

 ( ) M
M M M

dW dx
p t f f u

dt dt
= = =      (2-7) 

 

From Eq. 2-1, substituting Mf  as 
du

M
dt

, 

 

 ( )M

du
p t Mu

dt
=        (2-8) 

 

The energy input, which is stored as kinetic energy in the moving mass, can be 

calculated by integrating both sides of Eq. 2-8 with respect to time.  Assuming the 



 2-4 

initial speed u  to be zero at time t=0, the stored kinetic energy in the mass M can 

be calculated as 

 

 ( ) 21
2

0 0 0

t t u

M M

du
W p d M u d M udu Mu

d
τ τ τ

τ
= = = =∫ ∫ ∫    (2-9) 

 

where τ  is a variable of integration. 

 

2-3 ROTATING SYSTEMS 

 

Most electric motors are of rotating type.  Consider a lever, pivoted and free to 

move as shown in Fig. 2-3a.  When an external force f is applied in a 

perpendicular direction at a radius r  from the pivot, then the torque acting on the 

lever is  

 

 
[ ] [ ] [ ]

T f r

Nm N m

=
       (2-10) 

 

which acts in a counter-clockwise direction, considered here to be positive.  

 

�  Example 2-1   In Fig. 2-3a, a mass M is hung from the tip of the lever.  

Calculate the holding torque required to keep the lever from turning, as a function 

of angle θ  in the range of 0 to 90 degrees.  Assume that 0.5M kg=  and 

0.3r m= . 

(b)(a)

   Figure 2-3 (a) Pivoted Lever; (b) holding torque for the lever. 
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Solution     The gravitational force on the mass is shown in Fig. 2-3b.  For the 

lever to be stationary, the net force perpendicular to the lever must be zero, i.e.  

 

 cosf M g β=  

 

where 29.8 /  g m s= is the gravitational acceleration.  Note in Fig. 2-3b that 

β θ= .  The holding torque hT  must be 

 

 coshT f r M g r θ= = . 

 

Substituting the numerical values, 

 

 0.5 9.8 0.3 cos 1.47coshT Nmθ θ= × × × = .    �  

 

In electric machines, the various forces shown by arrows in Fig. 2-4 are produced 

due to electromagnetic interactions.  The definition of torque in Eq. 2-10 correctly 

describes the resulting electromagnetic torque emT  that causes the rotation of the 

motor and the mechanical load connected to it by a shaft.  

 

In a rotational system, the angular acceleration due to a net torque acting on it is 

determined by its moment-of-inertia J .  The example below shows how to 

calculate the moment-of-inertia J  of a rotating solid cylindrical mass. 

 

�  Example 2-2    
(a) Calculate the moment-of-inertia J of a solid cylinder that is free to rotate 

about its axis, as shown in Fig. 2-5a, in terms of its mass M  and the 

radius 1r . 

Figure 2-4 Torque in an electric motor. 
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(b) Given that a solid steel cylinder has radius 1 6r cm= , length 18cm=� , and 

the material density� 3 37.85 10 /kg mρ = × , calculate its moment-of-inertia 

J . 

 

Solution     (a) From Newton’s Law of Motion, in Fig. 2-5a, to accelerate a 

differential mass dM at a radius r , the net differential force df  required in a 

perpendicular (tangential) direction, from Eq. 2-1, is 

 

 ( )( )
du

dM df
dt

=        (2-11) 

 

where the linear speed u  in terms of the angular speed mω  (in rad/s) is 

 

 mu rω= .        (2-12) 

 

Multiplying both sides of Eq. 2-11 by the radius r , recognizing that ( )r df equals 

the net differential torque dT  and using Eq. 2-12,  

 

 2
m

d
r dM dT

dt
ω = .       (2-13) 

 

The same angular acceleration m

d

dt
ω  is experienced by all elements of the 

cylinder.  With the help of Fig. 2-5b, the differential mass dM in Eq. 2-13 can be 

expressed as 

�

df
dM

mω
1r

r

θ
dθ

rdθ
dr

d�

Figure 2-5 Calculation of the inertia, Jcyl, of a solid cylinder. 
(b)(a)
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� � �

arc height length

dM rd dr dρ θ= �        (2-14) 

 

where ρ is the material density in kg/m3.  Substituting dM from Eq. 2-14 into Eq. 

2-13, 

 

 3( ) m

d
r dr d d dT

dt
ρ θ ω =� .      (2-15) 

 

The net torque acting on the cylinder can be obtained by integrating over all 

differential elements in terms of r, θ , and �  as 

 

 
1 2

3

0 0 0

( )
r

m

d
r dr d d T

dt

π

ρ θ ω =∫ ∫ ∫
�

� .     (2-16) 

 

Carrying out the triple integration yields 

 

 4
1( )

2
cyl

m

J

d
r T

dt

π ρ ω =�
�����

       (2-17) 

or 

 m
cyl

d
J T

dt

ω =         (2-18) 

 

where the quantity within the brackets in Eq. 2-17 is called the moment-of-inertia 

J, which for a solid cylinder is  

 

 4
12cylJ r

π ρ= � .       (2-19) 

 

Since the mass of the cylinder in Fig. 2-5a is 2
1( )M rρ π= � , the moment-of-

inertia in Eq. 2-19 can be written as 
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 2
1

1

2cylJ M r= .        (2-20) 

 

(b) Substituting 1 6r cm= , length 18cm=� , and 3 37.85 10 /x kg mρ =  in Eq. 2-

19, the moment-of-inertia cylJ  of the cylinder in Fig. 2-5a is 

 

( )43 2
cylJ = 7.85 10 0.18 0.06 0.029 

2
kg m

π × × × × = ⋅ .   �  

 

The net torque JT acting on the rotating body of inertia J  causes it to accelerate.  

Similar to systems with linear motion where Mf M a= , Newton’s Law in 

rotational systems becomes 

 

 JT Jα=         (2-21) 

 

where the angular acceleration ( / )d dtα ω= in 2/rad s  is  

 

 m Jd T

dt J

ωα = =        (2-22) 

 

which is similar to Eq. 2-18 in the previous example.  In MKS units, a torque of 

1 Nm , acting on an inertia of 21 kg m⋅  results in an angular acceleration of 
21 /rad s . 

 

In systems such as the one shown in Fig. 2-6a, the motor produces an 

electromagnetic torque emT .  The bearing friction and wind resistance (drag) can 

Motor Load

mω

emT LT
emT

LT

mωα θJT

−
+ Σ ∫ ∫

eq

1

J

Figure 2-6  Motor and load torque interaction with a rigid coupling. 
(a) (b) 
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be combined with the load torque LT  opposing the rotation. In most systems, we 

can assume that the rotating part of the motor with inertia MJ  is rigidly coupled 

(without flexing) to the load inertia LJ .  The net torque, the difference between 

the electromagnetic torque developed by the motor and the load torque opposing 

it, causes the combined inertias of the motor and the load to accelerate in 

accordance with Eq. 2-22: 

 

 J
m

eq

Td

dt J
ω =         (2-23) 

 

where the net torque J em LT T T= −  and the equivalent combined 

inertia eq M LJ J J= + . 

 

�  Example 2-3   In Fig. 2-6a, each structure has the same inertia as the cylinder 

in Example 2-2.  The load torque LT  is negligible.  Calculate the required 

electromagnetic torque, if the speed is to increase linearly from rest to 1,800 rpm 

in 5 s . 

 

Solution     Using the results of Example 2-2, the combined inertia of the system is  

 
22 0.029 0.058eqJ kg m= × = ⋅ . 

 

The angular acceleration is 

 

2(1800 / 60)2
=     37.7 /

t 5
m

m

d
rad s

dt

ω πω ∆ = =
∆

. 

 

Therefore, from Eq. 2-23, 

 

0.058 37.7 2.19 emT Nm= × = .      �  
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Eq. 2-23 shows that the net torque is the quantity that causes acceleration, which 

in turn leads to changes in speed and position.  Integrating the acceleration ( )tα  

with respect to time, 

 

 Speed 
0

( ) (0) ( )
t

m mt dω ω α τ τ= + ∫      (2-24) 

 

where (0)mω  is the speed at t=0 and τ  is a variable of integration.  Further 

integrating ( )m tω  in Eq. 2-24 with respect to time yields 

 

 
0

( ) (0) ( )
t

mt dθ θ ω τ τ= + ∫       (2-25) 

 

where ( )0θ  is the position at 0t = , and τ  is again a variable of integration.  Eqs. 

2-23 through 2-25 indicate that torque is the fundamental variable for controlling 

speed and position.  Eqs. 2-23 through 2-25 can be represented in a block-diagram 

form, as shown in Fig. 2-6b. 

 

�  Example 2-4   Consider that the rotating system shown in Fig. 2-6a, with the 

combined inertia 2
eqJ 2 0.029=0.058 kg m= × ⋅ , is required to have the angular 

speed profile shown in Fig. 2-1b.  The load torque is zero.  Calculate and plot, as 

functions of time, the electromagnetic torque required from the motor and the 

change in position. 

 

Solution     In the plot of Fig. 2-1b, the magnitude of the acceleration and the 

deceleration is 100 rad/s2.  During the intervals of acceleration and deceleration, 

since 0LT = , 

 

 5.8m
em J eq

d
T T J Nm

dt

ω= = = ±   



 2-11 

 

as shown in Fig. 2-7.  During intervals with a constant speed, no torque is 

required.  Since the position θ  is the time-integral of speed, the resulting change 

of position (assuming that the initial position is zero) is also plotted in Fig. 2-7. �  

 

In a rotational system shown in Fig. 2-8, if a net torque T causes the cylinder to 

rotate by a differential angle dθ , the differential work done is 

 

 dW T dθ=         (2-26) 

 

 

If this differential rotation takes place in a differential time dt, the power can be 

expressed as 

 

 m

dW d
p T T

dt dt

θ ω= = =       (2-27) 

 

Figure 2-7 Speed, torque and angle variations with time. 

emT

mω

θ

( )t s

0

0

0

5.8 Nm

100 rad / s

( )t s

( )t s

4321

T
dθ

Figure 2-8 Torque, work and power. 
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where /m d dtω θ= is the angular speed of rotation.  Substituting for T  from Eq. 

2-21 into Eq. 2-27, 

 

 m
m

d
p J

dt

ω ω=        (2-28) 

 

Integrating both sides of Eq. 2-28 with respect to time, assuming that the speed 

mω  and the kinetic energy W  at time 0t =  are both zero, the kinetic energy 

stored in the rotating mass of inertia J  is 

 

 ( ) 21
2

0 0 0

mt t
m

m m m m

d
W p d J d J d J

d

ωωτ τ ω τ ω ω ω
τ

= = = =∫ ∫ ∫   (2-29) 

 

This stored kinetic energy can be recovered by making the power ( )p t  reverse 

direction, that is, by making ( )p t  negative. 

 

�  Example 2-5   In Example 2-3, calculate the kinetic energy stored in the 

combined inertia at a speed of 1,800 rpm. 

 

Solution     From Eq. 2-29, 

 

( ) ( )
2

21 1 1800
0.029 0.029 2 1030.4

2 2 60L M mW J J Jω π = + = + =  
. �  

 

2-4 FRICTION 

 

Friction within the motor and the load acts to oppose rotation.  Friction occurs in 

the bearings that support rotating structures.  Moreover, moving objects in air 

encounter windage or drag.  In vehicles, this drag is a major force that must be 

overcome.  Therefore, friction and windage can be considered as opposing forces 

or torque that must be overcome.  The frictional torque is generally nonlinear in 

nature.  We are all familiar with the need for a higher force (or torque) in the 

beginning (from rest) to set an object in motion.  This friction at zero speed is 

called stiction.  Once in motion, the friction may consist of a component called 
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Coulomb friction which remains independent of speed magnitude (it always 

opposes rotation), as well as another component called viscous friction, which 

increases linearly with speed.   

 

In general, the frictional torque fT  in a system consists of all of the 

aforementioned components.  An example is shown in Fig. 2-9; this friction 

characteristic may be linearized for an approximate analysis by means of the 

dotted line.  With this approximation, the characteristic is similar to that of 

viscous friction in which 

 

 f mT Bω=         (2-30) 

 

where B is the coefficient of viscous friction or viscous damping.  

 

�  Example 2-6   The aerodynamic drag force in automobiles can be estimated as 

20.046 wf C Au
L

= , where the drag force is in N, wC is the drag coefficient (a 

unit-less quantity), A is the vehicle cross-sectional area in m2, and u  is the sum 

of the vehicle speed and headwind in km/h [4].  If A = 1.8 m2 for each of the 

vehicles in Fig. 2-10a and 2-10b with wC  = 0.3 and wC  = 0.5 respectively, 

Figure 2-9 Actual and linearized friction characteristics. 

mω0

fT

f mT Bω=

Figure 2-10 Drag forces for different vehicles. 

(b) wC 0.5=(a) wC 0.3=
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calculate the drag force and the power required to overcome it at the speeds of 50 

km/h, and 100 km/h. 

 

Solution     The drag force is 20.046L wf C Au= and the power required at the 

constant speed, from Eq. 2-6, is LP f u=  where the speed is expressed in m/s.  

Table 2-1 lists the drag force and the power required at various speeds for the two 

vehicles.  Since the drag force LF  depends on the square of the speed, the power 

depends on the cube of the speed. 

 

Table 2-1 

 

Vehicle u = 50 km/h u = 100 km/h 

wC =0.3 62.06Lf N=  0.86P kW=  248.2Lf N=  6.9P kW=  

wC =0.5 103.4Lf N=  1.44P kW=  413.7Lf N=  11.5P kW=  

 
Traveling at 50 km/h compared to 100 km/h requires 1/8th the power, but it takes 

twice as long to reach the destination.  Therefore, the energy required at 50 km/h 

would be 1/4th that at 100 km/h.      �  

 

2-5 TORSIONAL RESONANCES 

 

In Fig. 2-6, the shaft connecting the motor with the load was assumed to be of 

infinite stiffness, that is, the two were rigidly connected.  In reality, any shaft will 

twist (flex) as it transmits torque from one end to the other.  In  Fig. 2-11, the 

torque shaftT  available to be transmitted by the shaft is 

 

 m
shaft em M

d
T T J

dt

ω= −        (2-31) 

 

Figure 2-11 Motor and load torque interaction with a rigid coupling. 

Motor Load

Mω

emT LT

MJ LJ

Lω
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This torque at the load-end overcomes the load torque and accelerates it, 

 

 shaft
L

L L

d
T T J

dt

ω= +        (2-32) 

 

The twisting or the flexing of the shaft, in terms of the angles at the two ends, 

depends on the shaft torsional or the compliance coefficient K : 

 

 ( ) shaft
M L

T

K
θ θ− =        (2-33) 

 

where Mθ  and Lθ  are the angular rotations at the two ends of the shaft.  If K  is 

infinite, Mθ  = Lθ .  For a shaft of finite compliance, these two angles are not equal 

and the shaft acts as a spring.  This compliance in the presence of energy stored in 

the masses and inertias of the system can lead to resonance conditions at certain 

frequencies.  This phenomenon is often termed torsional resonance.  Such 

resonances should be avoided or kept low, otherwise they can lead to fatigue and 

failure of the mechanical components. 
 

2-6 ELECTRICAL ANALOGY  
 

An analogy with electrical circuits can be very useful when analyzing mechanical 

systems. A commonly used analogy, though not a unique one, is to relate 

mechanical and electrical quantities as shown in Table 2–2. 
 

Table 2-2 Torque–Current Analogy 

Mechanical System Electrical System 

Torque (T) Current (i) 

Angular speed ( mω ) Voltage (v) 

Angular displacement ( θ ) Flux linkage ( ψ ) 

Moment of inertia (J) Capacitance (C) 

Spring constant (K) 1/inductance (1/L) 

Damping coefficient (B) 1/resistance (1/R) 

Coupling ratio (nM/nL) Transformer ratio (nL/nM) 

Note: The coupling ratio is discussed later in this chapter. 
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For the mechanical system shown in Fig. 2-11, Fig. 2-12a shows the electrical 

analogy, where each inertia is represented by a capacitor from its node to a 

reference (ground) node.  In this circuit, we can write equations similar to Eqs. 2-

31 through 2-33.  Assuming that the shaft is of infinite stiffness, the inductance 

representing it becomes zero, and the resulting circuit is shown in Fig. 2-12b, 

where m M Lω ω ω= = .  The two capacitors representing the two inertias can now 

be combined to result in a single equation similar to Eq. 2-23. 

 

 

�  Example 2-7   In an electric-motor drive similar to that shown in Fig. 2-6a, the 

combined inertia is 3 25 10eqJ kg m−= × ⋅ .  The load torque opposing rotation is 

mainly due to friction, and can be described as 30.5 10L LT ω−= × .  Draw the 

electrical equivalent circuit and plot the electromagnetic torque required from the 

motor to bring the system linearly from rest to a speed of 100 rad/s in 4 s, and 

then to maintain that speed. 

 

Solution     The electrical equivalent circuit is shown in Fig. 2-13a.  The inertia is 

represented by a capacitor of 5mF , and the friction by a 

resistance
3

1
2000

0.5 10
R −= = Ω

×
.  The linear acceleration is 2100

25 /
4

rad s= , 

which in the equivalent electrical circuit corresponds to 25
dv V

dt s
= .  Therefore, 

during the acceleration period, ( ) 25v t t= .  Thus, the capacitor current during the 

linear acceleration interval is 

 

Figure 2-12 Electrical analogy: (a) shaft of finite stiffness; (b) shaft of infinite stiffness. 
(b)(a)

emT
LT

eq M LJ J J= +

mω

JT

MJ LJ

Mω Lω1 / K

emT
LTshaftT
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 ( ) 125.0c

dv
i t C mA

dt
= =    0 4t s≤ <   (2-34a) 

 

and the current through the resistor is 

 

 
( ) 25

( ) 12.5
2000R

v t t
i t t mA

R
= = =    0 4t s≤ <   (2-34b) 

 

Therefore, 

 

 3( ) (125.0 12.5 ) 10emT t t Nm−= + ×   0 4t s≤ <   (2-34c) 

 

 

Beyond the acceleration stage, the electromagnetic torque is required only to 

overcome friction, which equals 350 10 Nm−× , as plotted in Fig. 2-13b. �  

 

2-7 COUPLING MECHANISMS 

 

Wherever possible, it is preferable to couple the load directly to the motor, to 

avoid the additional cost of the coupling mechanism and of the associated power 

losses.  In practice, coupling mechanisms are often used for the following reasons: 

 

 • a rotary motor is driving a load which requires linear motion 

 • the motors are designed to operate at higher rotational speeds (to 

reduce their physical size) compared to the speeds required of the 

mechanical loads 

Ci Ri

v( t )

i
2000 Ω

35 10 F−×

(a) (b)
Figure 2-13 (a) Electrical equivalent; (b) torque and speed variation. 

( )emT Nm
( )t s

( )m rad / sω 100

125m

0

0

175m

50m

4s
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 • the axis of rotation needs to be changed 

 

There are various types of coupling mechanisms.  For conversion between rotary 

and linear motions, it is possible to use conveyor belts (belt and pulley), rack-and-

pinion or a lead-screw type of arrangement.  For rotary-to-rotary motion, various 

types of gear mechanisms are employed. 

 

The coupling mechanisms have the following disadvantages: 

• additional power loss 

• introduction of nonlinearity due to a phenomenon called backlash  

• wear and tear 

 

2-7-1 Conversion between Linear and Rotary Motion 

 

In many systems, a linear motion is achieved by using a rotating-type motor, as 

shown in Fig. 2-14.   

 

In such a system, the angular and the linear speeds are related by the radius r  of 

the drum: 

 

 mu rω=         (2-35) 

 

To accelerate the mass M in Fig. 2-14 in the presence of an opposing force Lf , 

the force f applied to the mass, from Eq. 2-1, must be  

 

 L

du
f M f

dt
= +        (2-36) 

Figure 2-14 Combination of rotary and linear motion. 

Motor
MJ

mω

r

M u
Lf

motor inertia
mass of load
pulley radius

MJ
M
r

=
=
=

emT
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This force is delivered by the motor in the form of a torque T, which is related to 

f, using Eq. 2-35, as 

 

 2 m
L

d
T r f r M r f

dt

ω= ⋅ = +       (2-37) 

 

Therefore, the electromagnetic torque required from the motor is 

 

 2m m
em M

duetoload

L

d d
T J r M r f

dt dt

ω ω= + +
�������

     (2-38) 

 

�  Example 2-8   In the vehicle of Example 2-6 with 0.5wC = , assume that each 

wheel is powered by its own electric motor that is directly coupled to it.  If the 

wheel diameter is 60 cm, calculate the torque and the power required from each 

motor to overcome the drag force, when the vehicle is traveling at a speed of 100 

km/h. 

 

Solution     In Example 2-6, the vehicle with Cw = 0.5 presented a drag force fL = 

413.7 N at the speed u = 100 km/h.  The force required from each of the four 

motors is 103.4
4

L
M

f
f N= = . Therefore, the torque required from each motor is 

 

 
0.6

103.4 31.04
2M MT f r Nm= = × = . 

 

From Eq. 2-35, 

 

 
3100 10 1

( ) 92.6 /
3600 (0.6 / 2)m

u
rad s

r
ω ×= = = . 

 

Therefore, the power required from each motor is 

 

 2.87M mT kWω = .       �  
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2-7-2 Gears 
 
For matching speeds, Fig. 2-15 shows a gear mechanism where the shafts are 

assumed to be of infinite stiffness and the masses of the gears are ignored.  We 

will further assume that there is no power loss in the gears.  Both gears must have 

the same linear speed at the point of contact.  Therefore, their angular speeds are 

related by their respective radii 1r  and 2r  such that 

 

 1 2M Lr rω ω=         (2-39) 

and 

 1 2M LT Tω ω=    (assuming no power loss)  (2-40) 

 

 

Combining Eqs. 2-39 and 2-40, 

 

 
2

1 1

2 M

Lr T

r T

ω
ω

= =         (2-41) 

 

where T1 and T2 are the torques at the ends of the gear mechanism, as shown in 

Fig. 2-15.  Expressing 1T  and 2T  in terms of emT  and LT  in Eq. 2-41, 

 

Fig. 2-15 Gear mechanism for coupling the motor to the load. 

emT

LT
MJ

LJ

2r

1r

2T

1T

Mω

Lω

Motor

Load
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1 2

( ) ( )
L

M M
em M

T T

L
L

L

d d
T J T J

dt dt

ω ω ω
ω

− = +
������� �������

     (2-42) 

 

From Eq. 2-42, the electromagnetic torque required from the motor is 

 

2[ ( ) ] ( )
L

eq

M
em M

M M

J

L L
L

d
T J J T

dt

ω ω ω
ω ω

= + +
�������

 (note: L M L

M

d d

dt dt

ω ω ω
ω

= ) (2-43) 

 

where the equivalent inertia at the motor side is 

 

 
2 2

2

1
eq M L M L

M

L r
J J J J J

r

ω
ω

   
= + = +   

   
    (2-44) 

 

2-7-2-1     Optimum Gear Ratio 

 

Eq. 2-43 shows that the electromagnetic torque required from the motor to 

accelerate a motor-load combination depends on the gear ratio.  In a basically 

inertial load where LT  can be assumed to be negligible, emT  can be minimized, for 

a given load-acceleration Ld

dt

ω
, by selecting an optimum gear ratio ( )1 2 .opt

r r . The 

derivation of the optimum gear ratio shows that the load inertia “seen” by the 

motor should equal the motor inertia, that is, in Eq. 2-44 

 

 
2

1
.

2.

1

2

( ) M
M L opt

Lopt

r r J
J J or

r r J

 
= = 

 
    (2-45a) 

 

and, consequently, 

 

 2eq MJ J=         (2-45b) 

 

With the optimum gear ratio, in Eq. 2-43, using 0LT = , and using Eq. 2-41, 
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 ( ) .
1

.
2

2

( )

M L
em opt

opt

J d
T

r dt
r

ω=       (2-46) 

 

Similar calculations can be made for other types of coupling mechanisms (see 

homework problems).   

 

2-8 TYPES OF LOADS 

 

Load torques normally act to oppose rotation.  In practice, loads can be classified 

into the following categories [5]: 

 

 1. Centrifugal (Squared) Torque 

 2. Constant Torque 

3. Squared Power 

4. Constant Power 

 

2-8-1 Centrifugal Loads         
 
Centrifugal loads such as fans and blowers require torque that varies with speed2 

and load power that varies with speed3, as shown in Fig. 2-16. 

 

 

 

 

Figure 2-16 (a) Characteristics of centrifugal loads; (b) fan  – example of a 
centrifugal load [5].  
 

(a) (b)
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2-8-2 Constant-Torque Loads 
 

In constant-torque loads such as conveyors, hoists, cranes, and elevators, torque 

remains constant with speed and the load power varies linearly with speed as 

shown in Fig. 2-17. 

 

2-8-3 Squared-Power Loads 
 

In squared-power loads such as compressors and rollers, torque varies linearly 

with speed and the load power varies with speed2 as shown in Fig. 2-18. 

 

(a) (b)

Figure 2-17 (a) Characteristics of constant-torque loads; (b) hoist  – example of 
a constant-torque load [5].  

(a) (b)

Figure 2-18 (a) Characteristics of squared-power loads; (b) compressor – 
example of a squared-power load [5].  
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2-8-4 Constant-Power Loads 
 

In constant-power loads such as winders and unwinders, the torque beyond a 

certain speed range varies inversely with speed and the load power remains 

constant with speed, as shown in Fig. 2-19. 

 

 

2-9 FOUR-QUADRANT OPERATION   

 

In many high-performance systems, drives are required to operate in all four 

quadrants of the torque-speed plane, as shown in Fig. 2-20b.  The motor drives 

the load in the forward direction in quadrant 1, and in the reverse direction in 

quadrant 3.  In both of these quadrants, the average power is positive and flows 

from the motor to the mechanical load.  In order to control the load speed rapidly, 

it may be necessary to operate the system in the regenerative braking mode, where 

the direction of power is reversed so that it flows from the load into the motor, 

and usually into the utility (through the power-processing unit).  In quadrant 2, the 

speed is positive but the torque produced by the motor is negative.  In quadrant 4, 

the speed is negative and the motor torque is positive. 

 (a) (b)

Figure 2-19 (a) Characteristics of constant-power loads; (b) winder – 
example of a constant-power load [5].  
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2-10 STEADY STATE AND DYNAMIC OPERATIONS 

 

As discussed in section 2-8, each load has its own torque-speed characteristic.  

For high performance drives, in addition to the steady state operation, the 

dynamic operation - how the operating point changes with time - is also 

important.  The change of speed of the motor-load combination should be 

accomplished rapidly and without any oscillations (which otherwise may destroy 

the load).  This requires a good design of the closed-loop controller, as discussed 

in Chapter 8, which deals with control of drives. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. What are the MKS units for force, torque, linear speed, angular speed, speed 

and power? 

2. What is the relationship between force, torque and power? 

3. Show that torque is the fundamental variable in controlling speed and 

position. 

4. What is the kinetic energy stored in a moving mass and a rotating mass? 

5. What is the mechanism for torsional resonances? 

6. What are the various types of coupling mechanisms? 

7. What is the optimum gear ratio to minimize the torque required from the 

motor for a given load-speed profile as a function of time? 

8. What are the torque-speed and the power-speed profiles for various types of 

loads? 

 

emT

m
emT

P

ω = +
= −
= −

m
emT

P

ω = −
= −
= +

m
emT

P

ω = −
= +
= −

m
emT

P

ω = +
= +
= +

mω

Motor Load
emT mω

Figure 2-20 Four-quadrant requirement in drives. 
(a) (b) 
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PROBLEMS 
 
2-1 A constant torque of 5 Nm is applied to an unloaded motor at rest at time t 

= 0.  The motor reaches a speed of 1800 rpm in 4 s.  Assuming the 

damping to be negligible, calculate the motor inertia. 

2-2 Calculate the inertia if the cylinder in Example 2-2 is hollow, with the 

inner radius 2r = 3 cm. 

2-3 A vehicle of mass 1,400 kg is traveling at a speed of 50 km/hr. What is the 

kinetic energy stored in its mass?  Calculate the energy that can be 

recovered by slowing the vehicle to a speed of 10 km/hr. 

 

Belt-and-Pulley System 

 

2-4 Consider the belt and pulley system in Fig 2-14.  Inertias other than that 

shown in the figure are negligible.  The pulley radius r = 0.09 m and the 

motor inertia JM = 0.01 2kg m⋅ .  Calculate the torque Tem required to 

accelerate a load of 1.0 kg from rest to a speed of 1 m/s in a time of 5 s.  

Assume the motor torque to be constant during this interval. 

2-5 For the belt and pulley system shown in Fig. 2-14, M = 0.02 kg.  For a 

motor with inertia JM = 40 2g cm⋅ , determine the pulley radius that 

minimizes the torque required from the motor for a given load-speed 

profile.  Ignore damping and the load force Lf . 
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Gears 

 

2-6 In the gear system shown in Fig. 2-15, the gear ratio /L Mn n = 3 where n 

equals the number of teeth in a gear.  The load and motor inertia are JL = 

10 2kg m⋅  and JM  = 1.2 2kg m⋅ .  Damping and the load-torque LT  can be 

neglected.  For the load-speed profile shown in Fig. 2-1b, draw the profile 

of the electromagnetic torque Tem required from the motor as a function of 

time. 

2-7 In the system of Problem 2-6, assume a triangular speed profile of the load 

with equal acceleration and deceleration rates (starting and ending at zero 

speed).  Assuming a coupling efficiency of 100%, calculate the time 

needed to rotate the load by an angle of 30o if the magnitude of the 

electromagnetic torque (positive or negative) from the motor is 500 Nm. 

2-8 The vehicle in Example 2-8 is powered by motors that have a maximum 

speed of 6000 rpm.  Each motor is coupled to the wheel using a gear 

mechanism.  (a) Calculate the required gear ratio if the vehicle’s 

maximum speed is 150 km/hr, and (b) calculate the torque required from 

each motor at the maximum speed. 

2-9 Consider the system shown in Fig. 2-15.  For JM = 40 2g cm⋅  and JL = 60 
2g cm⋅ , what is the optimum gear ratio to minimize the torque required 

from the motor for a given load-speed profile?  Neglect damping and 

external load torque. 

 

Lead-Screw Mechanism 

 

2-10 Consider the lead-screw drive shown in Fig. P2-10. Derive the following 

equation in terms of pitch s, where Lu� = linear acceleration of the load, MJ  

= motor inertia, sJ  = screw arrangement inertia, and the coupling ratio 

2

s
n

π
= : 

( )2L

em M s T W L

u
T J J n M M n F

n
 = + + + + 

�
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SIMULATION PROBLEMS 
 

2-11 Making an electrical analogy, solve Problem 2-4. 

2-12 Making an electrical analogy, solve Problem 2-6. 

Figure P2-10 Lead-screw system. 

Pitch ( / )s m turn

Table

Motor

Milling tool

Work Piece

mθ

LF

WM
TM

Lx

emT
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CHAPTER  3 

 

REVIEW OF  
BASIC ELECTRIC  
CIRCUITS 
 

 
3-1 INTRODUCTION 
 

The purpose of this chapter is to review elements of the basic electric circuit 

theory that are essential to the study of electric drives: the use of phasors to 

analyze circuits in sinusoidal steady state, the reactive power, the power factor, 

and the analysis of three-phase circuits. 

 

In this book, we will use MKS units and the IEEE-standard letters and graphic 

symbols whenever possible. The lowercase letters v  and i  are used to represent 

instantaneous values of voltages and currents that vary as functions of time.  They 

may or may not be shown explicitly as functions of time t .  A current’s positive 

direction is indicated by an arrow, as shown in Fig. 3-1.  Similarly, the voltage 

polarities must be indicated.  The voltage abv  refers to the voltage of node " a " 

with respect to node "b ," thus ab a bv v v= − . 

 

 

i

av

+

−

+

−

+ −

bv

ba
abv

Figure 3-1 Conventions for currents and voltages. 
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3-2 PHASOR REPRESENTATION IN SINUSOIDAL STEADY STATE 

 

In linear circuits with sinusoidal voltages and currents of frequency f  applied for 

a long time to reach steady state, all circuit voltages and currents are at a 

frequency ( / 2 )f ω π= .  To analyze such circuits, calculations are simplified by 

means of phasor-domain analysis.  The use of phasors also provides a deeper 

insight (with relative ease) into circuit behavior.  

 

In the phasor domain, the time-domain variables ( )v t  and ( )i t  are transformed 

into phasors which are represented by the complex variables V  and I .  Note that 

these phasors are expressed by uppercase letters with a bar “-“ on top.  In a 

complex (real and imaginary) plane, these phasors can be drawn with a magnitude 

and an angle. 

 

A co-sinusoidal time function is taken as a reference phasor; for example, the 

voltage expression in Eq. 3-1 below is represented by a phasor, which is entirely 

real with an angle of zero degrees: 

 

 ˆ( ) cosv t V tω=   ⇔   ˆ 0V V= ∠    (3-1) 

 

Similarly,  

 

 ( ) cos( )i t I tω φ= −�   ⇔  I I φ= ∠ −�    (3-2) 

 

where “^” indicates the peak amplitude.  These voltage and current phasors are 

drawn in Fig. 3-2.  We should note the following in Eqs. 3-1 and 3-2: we have 

chosen the peak values of voltages and currents to represent the phasor 

magnitudes, and the frequency ω  is implicitly associated with each phasor.  

Knowing this frequency, a phasor expression can be re-transformed into a time-

domain expression. 

 

Using phasors, we can convert differential equations into easily solved algebraic 

equations containing complex variables.  Consider the circuit of Fig. 3-3a in a 

sinusoidal steady state with an applied voltage at a frequency ( / 2 )f ω π= .  In 
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order to calculate the current in this circuit, remaining in time domain, we would 

be required to solve the following differential equation: 

 

 �( ) 1
( ) ( ) • cos( )

di t
Ri t L i t dt V t

dt C
ω+ + =∫     (3-3) 

 

Using phasors, we can redraw the circuit of Fig. 3-3a in Fig. 3-3b, where the 

inductance L  is represented by j Lω  and the capacitance C  is signified by 

1
( )j

Cω
− .  In the phasor-domain circuit, the impedance Z  of the series-connected 

elements is obtained by the impedance triangle of Fig. 3-3c as 

 

 L cZ R jX jX= + −        (3-4) 

where 

 LX Lω= , and   
1

cX
Cω

=       (3-5) 

 

 

 

 Im ag in ary

Real

Positive
angles

I I φ= ∠ −

V V 0= ∠

φ−

Figure 3-2 Phasor diagram. 

(a) (b) 

Figure 3-3 (a) Time domain circuit; (b) phasor domain circuit; (c) impedance triangle. 

( )i t

ˆV V 0= ∠

L

R

C

I

Lj L j Xω =

R

C
1

j j X
Cω

 
− = − 

 

ˆv( t ) V cos( t )ω=

+

−

(c) 

Im

Z

cjX−

R

LjX

Re
0

φ
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This impedance can be expressed as 

 

 Z Z ϕ= ∠         (3-6a) 

where 

 
2

2 1
Z R L

C
ω

ω
 = + −  

 and 1

1

tan
L

C
R

ω
ωφ −

  −    =
 
  

 (3-6b) 

 

It is important to recognize that while Z is a complex quantity, it is not a phasor 

and does not have a corresponding time-domain expression. 

 

�  Example 3-1   Calculate the impedance seen from the terminals of the circuit 

in Fig. 3-4 under a sinusoidal steady state at a frequency 60f Hz= . 

 

Solution 

Z = j0.1+(-j5.0 2.0) . 

( )
-j10

Z = j0.1  = 1.72 j0.59 = 1.82 18.9
2-j5

+ − ∠ − ° Ω .   �  

 

Using the impedance in Eq. 3-6, the current in Fig. 3-3b can be obtained as 

 

 
ˆV V

I
Z Z

φ
 

= = ∠ −   
       (3-7) 

 

 

2 Ωj5− Ω

j0.1Ω

Figure 3-4 Impedance network. 
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where 
V̂

I
Z

=�  and φ  is as calculated from Eq. 3-6b.  Using Eq. 3-2, the current 

can be expressed in the time domain as 

 

 ( )
ˆ

( ) cos
V

i t t
Z

ω φ= −        (3-8) 

 

In the impedance triangle of Fig. 3-3c, a positive value of the phase angle φ  

implies that the current lags behind the voltage in the circuit of Fig. 3-3a.  

Sometimes, it is convenient to express the inverse of the impedance, which is 

called admittance: 

 

  
1

Y
Z

=         (3-9) 

 

The phasor-domain procedure for solving ( )i t  is much easier than solving the 

differential-integral equation given by Eq. 3-3 (see homework problems 3-3 and 

3-4). 

 

�  Example 3-2   Calculate the current 1I  and 1( )i t  in the circuit of Fig. 3-5 if the 

applied voltage has an rms value of 120V  and a frequency of 60 Hz .  Assume 1V  

to be the reference phasor. 

 

Solution      For an rms value of 120V , the peak amplitude is 

1̂ 2 120 169.7V V= × = .  With 1V  as the reference phasor, it can be written as 

0
1 169.7 0V V= ∠ .  Impedance of the circuit seen from the applied voltage 

terminals is 

 

−

+
1I

1V 2R 7.0= ΩmjX j15= Ω

2jX j0.2= Ω1jX j0.5= Ω
1R 0.3= Ω

Figure  3-5 Example 3-2. 
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 ( ) ( ) ( )1 1 m 2 2Z R jX jX R jX= + + +  

( ) ( )( )
( ) ( )

15 7 0.2
 0.3 0.5 (5.92 3.29) 6.78 29

15 7 0.2

j j
j j

j j

+
= + + = + = ∠ ° Ω

+ +
. 

 

01
1

V 169.7 0
25.0 29

Z 6.78 29
I A

∠ °= = = ∠ −
∠ °

.  Therefore,  

 

( ) ( )0
1i t 25.0cos t 29 Aω= − . 

The rms value of this current is 
25.0

17.7
2

A= .    �  

 

3-2-1 Power, Reactive Power, and Power Factor 
 
Consider the generic circuit of Fig. 3-6 in a sinusoidal steady state.  Each sub-

circuit may consist of passive (R-L-C) elements and active voltage and current 

sources.  Based on the arbitrarily chosen voltage polarity and the current direction 

shown in Fig. 3-6, the instantaneous power ( ) ( ) ( )p t v t i t=  is delivered by sub-

circuit 1 and absorbed by sub-circuit 2.  This is because in sub-circuit 1 the 

positively-defined current is coming out of the positive-polarity terminal (the 

same as in a generator).  On the other hand, the positively-defined current is 

entering the positive-polarity terminal in sub-circuit 2 (the same as in a load).  A 

negative value of ( )p t  reverses the roles of sub-circuit 1 and sub-circuit 2. 

 

 

Figure 3-6 A generic circuit divided into two sub-circuits. 

Subciruit 2S u b ciru it 1

( ) ( ) ( )p t v t i t=

( )v t

( )i t

+

−
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Under a sinusoidal steady state condition at a frequency f , the complex power 

S , the reactive power Q , and the power factor express how "effectively" the real 

(average) power P  is transferred from one sub-circuit to the other. 

 

If ( )v t  and ( )i t  are in phase, ( ) ( ) ( )p t v t i t= , as shown in Fig. 3-7a, pulsates at 

twice the steady state frequency.  But, at all times, ( ) 0p t ≥ , and therefore the 

power always flows in one direction: from sub-circuit 1 to sub-circuit 2.  Now 

consider the waveforms of Fig. 3-7b, where the ( )i t  waveform lags behind the 

( )v t  waveform by a phase angle ( )tφ .  Now, ( )p t  becomes negative during a 

time interval of ( )/φ ω  during each half-cycle.  A negative instantaneous power 

implies power flow in the opposite direction.  This back-and-forth flow of power 

indicates that the real (average) power is not optimally transferred from one sub-

circuit to the other, as is the case in Fig. 3-7a.  

 

The circuit of Fig. 3-6 is redrawn in Fig. 3-8a in the phasor domain.  The voltage 

and the current phasors are defined by their magnitudes and phase angles as 

 

 ˆ
vV V φ= ∠  and  iI I φ= ∠�      (3-10) 

 

In Fig. 3-8b, it is assumed that 0vφ =  and that iφ  has a negative value.  To 

express real, reactive and complex powers, it is convenient to use the rms voltage 

value V  and the rms current value I , where  

 

/φ ω

ti( t )

v( t )

p( t )

t

i( t )

v( t )

p( t )

(a) (b) 

Figure 3-7 Instantaneous power with sinusoidal currents and voltages. 
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 �1

2
V V=  and 

1

2
I I= �      (3-11) 

 

The complex power S is defined as 

 

 
*1

2
S V I=  (* indicates complex conjugate)   (3-12) 

 

Therefore, substituting the expressions for voltage and current into Eq. 3-12, and 

noting that 
*

iI I φ= ∠ −� , in terms of the rms values of Eq. 3-11, 

 

 ( )v i v iS V I V Iφ φ φ φ= ∠ ∠ − = ∠ −      (3-13) 

 

The difference between the two phase angles is defined as 

 

 v iφ φ φ= −         (3-14) 

 

Therefore, 

 

 S V I P jQφ= ∠ = +        (3-15) 

 

φ

Im
Q

P

S

Figure  3-8 (a) Power transfer in phasor dom ain; (b) phasor diagram ; (c) power triangle. 

V

I

S P jQ= +

+

−

Subciruit1 Subciruit 2

v
ˆV V φ= ∠

i
ˆI I φ= ∠

i
φ

Im

(b) (c) 

(a ) 
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where 

 

 cosP V I φ=         (3-16) 

and 

 sinQ V I φ=         (3-17) 

 

The power triangle corresponding to Fig. 3-8b is shown in Fig. 3-8c.  From Eq. 3-

15, the magnitude of S , also called the "apparent power," is 

 

 S  = 2 2P Q+        (3-18) 

and 

 1tan
Q

P
φ −  =   

        (3-19) 

 

The above quantities have the following units: P : W (Watts); Q : Var (Volt-

Amperes Reactive) assuming by convention that an inductive load draws positive 

vars; S : VA (Volt-amperes); finally, , ,v iφ φ φ : radians, measured positively in a 

counter-clockwise direction with respect to the reference axis (drawn horizontally 

from left to right). 

 

The physical significance of the apparent power S , P , and Q  should be 

understood.  The cost of most electrical equipment such as generators, 

transformers, and transmission lines is proportional to ( )S V I= , since their 

electrical insulation level and the magnetic core size depend on the voltage V and 

the conductor size depends on the current I.  The real power P  has physical 

significance since it represents the useful work being performed plus the losses.  

In most situations, it is desirable to have the reactive power Q  be zero.  

 

To support the above discussion, another quantity called the power factor is 

defined.  The power factor is a measure of how effectively a load draws real 

power: 
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 power factor = cos
P P

S VI
φ= =  (3-20) 

 

which is a dimension-less quantity.  Ideally, the power factor should be 1.0 (that 

is, Q  should be zero) in order to draw real power with a minimum current 

magnitude and hence minimize losses in electrical equipment and transmission 

and distribution lines.  An inductive load draws power at a lagging power factor 

where the current lags behind the voltage.  Conversely, a capacitive load draws 

power at a leading power factor where the load current leads the load voltage. 

 

�  Example 3-3  Calculate P, Q, S, and the power factor of operation at the 

terminals in the circuit of Fig. 3-5 in Example 3-2.  Draw the power triangle. 

 

Solution 
0

1 1  cos 120 17.7cos 29 1857.7 P V I Wφ= = × =  
0

1 1Q V I sin 120 17.7 sin 29 1029.7 VARφ= = × × =  

1 1 120 17.7 2124 S V I VA= = × =  

 

From Eq. 3-19, 1 0tan 29
Q

P
φ −= = .  The power triangle is shown in Fig. 3-9.  Note 

that the angle S  in the power triangle is the same as the impedance angle φ  in 

Example 3-2.         �  

 

Also note the following for the inductive impedance in the above example: 1) The 

impedance is Z = Z φ∠ , where φ  is positive. 2) The current lags the voltage by 

the impedance angle φ .  This corresponds to a lagging power factor of operation.  

3) In the power triangle, the impedance angle φ  relates P , Q , and S .  4) An 

inductive impedance, when applied a voltage, draws a positive reactive power 

 

Figure  3-9 Power Triangle. 

o29

Im

Re

jQ

P
0

S
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(vars).  If the impedance were to be capacitive, the phase angle φ  would be 

negative and the impedance would draw a negative reactive power (in other 

words, the impedance would supply a positive reactive power). 

 

3-3 THREE-PHASE CIRCUITS 
 

Basic understanding of three-phase circuits is just as important in the study of 

electric drives as in power systems.  Nearly all electricity is generated by means 

of three-phase ac generators.  Figure 3-10 shows a one-line diagram of a three-

phase transmission and distribution system.  Generated voltages (usually between 

22 and 69 kV) are stepped up by means of transformers to 230 kV to 500 kV level 

for transferring power over transmission lines from the generation site to load 

centers.  Most motor loads above a few kW in power rating operate from three-

phase voltages.  In most ac motor drives, the input to the drive may be a single-

phase or a three-phase line-frequency ac.  However, motors are almost always 

supplied by three-phase, adjustable frequency ac, with the exception of the small, 

two-phase fan motors used in electronic equipment. 

 

The most common configurations of three-phase ac circuits are wye-connections 

and delta connections.  We will investigate both of these under sinusoidal steady 

state conditions.  In addition, we will assume a balanced condition, which implies 

that all three voltages are equal in magnitude and displaced by 0120  ( 2 / 3π  

radians) with respect to each other. 

 

Feeder

Step up 
Transformer

Generator

Transmission 
line

13.8 kV

Load

Figure 3-10 One-line diagram of a three phase transmission and distribution system. 
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Consider the wye-connected source and the load shown in the phasor domain in 

Fig. 3-11.   

The phase sequence is commonly assumed to be a b c− − , which is considered a 

positive sequence.  In this sequence, the phase “ a ” voltage leads the phase “b ” 

voltage by 0120 , and phase “b ” leads phase “ c ” by 0120  ( 2 / 3π  radians), as 

shown in Fig. 3-12.   

This applies to both the time domain and the phasor domain.  Notice that in the 

a b c− −  sequence voltages plotted in Fig. 3-12a, first anv  reaches its positive 

peak, and then bnv  reaches its positive peak 2 / 3π  radians later, and so on.  We 

can represent these voltages in the phasor form as 

 

 0 0 0ˆ ˆ ˆ0 , 120 , and 240an s bn s cn sV V V V V V= ∠ = ∠ − = ∠ −   (3-21) 

 

where ŝV  is the phase-voltage amplitude and the phase “ a ” voltage is assumed to 

be the reference (with an angle of zero degrees).  For a balanced set of voltages 

given by Eq. 3-21, at any instant, the sum of these phase voltages equals zero: 

 aI

anV

bnVcnV

−

+

−

+
−

+

cI

LZ

bIc b

a

n N

Figure 3-11 Y-connected source and load. 

 

anV

bnV

cnV

120°

120°

120°

a b c− −
positive

sequence

tω

anv bnv cnv

0

2
3

π2
3

π

Figure 3-12  Three phase voltages in time and phasor domain. 
(b) (a) 
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 0an bn cnV V V+ + =  and ( ) ( ) ( ) 0an bn cnv t v t v t+ + =   (3-22) 

 

3-3-1 Per-Phase Analysis 
 

A three-phase circuit can be analyzed on a per-phase basis, provided that it has a 

balanced set of source voltages and equal impedances in each of the phases.  Such 

a circuit was shown in Fig. 3-11.  In such a circuit, the source neutral “ n ” and the 

load neutral “ N ” are at the same potential.  Therefore, "hypothetically" 

connecting these with a zero impedance wire, as shown in Fig. 3-13, does not 

change the original three-phase circuit, which can now be analyzed on a per-

phase basis.   

 

Selecting phase “ a ” for this analysis, the per-phase circuit is shown in Fig. 3-14a.   

If L LZ Z φ= ∠ , using the fact that in a balanced three-phase circuit, phase 

quantities are displaced by 0120  with respect to each other, we find that 

 

 aI

anV

bnVcnV

−

+

−
+

−
+

cI

LZ

bIc b

a

n N

Figure 3-13 Hypothetical wire connecting source and load neutrals. 

 

aIbI

cI

anV

cnV

bnV

φ

aI

a

Nn

anV

−

+

a

(Hypothetical)

(a)  (b) 
Figure  3-14 (a) Single phase equivalent circuit; (b) phasor diagram. 
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ˆ
,

ˆ 2
( ),

3

ˆ 4
( )

3

an s
a

L L

bn s
b

L L

cn s
c

L L

V V
I

Z Z

V V
I

Z Z

V V
I

Z Z

φ

π φ

π φ

= = ∠ −

= = ∠ − −

= = ∠ − −

and     (3-23) 

 

The three-phase voltages and currents are shown in Fig. 3-14b.  The total real and 

reactive powers in a balanced three-phase circuit can be obtained by multiplying 

the per-phase values by a factor of 3 .  The power factor is the same as its per-

phase value. 

 

�  Example 3-4   In the balanced circuit of Fig. 3-11, the rms phase voltages 

equal 120V  and the load impedance 05 30LZ = ∠ Ω .  Calculate the power factor 

of operation and the total real and reactive power consumed by the three-phase 

load. 

 

Solution     Since the circuit is balanced, only one of the phases, for example 

phase “ a ,” needs to be analyzed: 

 

 02 120 0anV V= × ∠  

 

 0

L

2 120 0
2 24 30

Z 5 30
an

a

V
I A

× ∠ °= = = × ∠ −
∠ °

 

 

The rms value of the current is 24A .  The power factor can be calculated as 

 

power factor = 0cos30 0.866=  (lagging). 

 

The total real power consumed by the load is 

 
03 cos 3 120 24 cos30 7482 an aP V I Wφ= = × × × = . 
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The total reactive power “consumed” by the load is 

 
03 sin 3 120 24 sin 30 4320an aQ V I VARφ= = × × × = .   �  

 

3-3-2 Line-to-Line Voltages 
 

In the balanced wye-connected circuit of Fig. 3-11, it is often necessary to 

consider the line-to-line voltages, such as those between phases “ a ” and “b ,” 

and so on.  Based on the previous analysis, we can refer to both neutral points 

“ n ” and “ N ” by a common term " n ," since the potential difference between n  

and N  is zero.  Therefore, in Fig. 3-11, 

 

 , , andab an bn bc bn cn ca cn anV V V V V V V V V= − = − = −   (3-24) 

 

as shown in the phasor diagram of Fig. 3-15.  Either using Eq. 3-24, or 

graphically from Fig. 3-15, we can show that 

 

 

ˆ3
6

2ˆ ˆ3 ( ) 3
6 3 2

4 7ˆ ˆ3 ( ) 3
6 3 6

ab s

bc s s

ca s s

V V

V V V

V V V

π

π π π

π π π

= ∠

= ∠ − = ∠ −

= ∠ − = ∠ −

     (3-25) 

 

Comparing Eqs. 3-21 and 3-25, we see that the line-to-line voltages have an 

amplitude of 3  times the phase voltage amplitude: 

 

 

Figure  3-15 Line-to-line voltages  in a balanced system . 

o30
aV

aI

bV−
abVcV

cI
caV

bI

bcV

bV
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 ˆ ˆ3LL sV V=         (3-26) 

 

and abV  leads anV  by / 6π  radians ( 030 ). 

 

3-3-3 Delta-Connected Loads 
 
In ac-motor drives, the three motor phases may be connected in a delta 

configuration.  Therefore, we will consider the circuit of Fig. 3-16 where the load 

is connected in a delta configuration.  Under a totally balanced condition, it is 

possible to replace the delta-connected load with an equivalent wye-connected 

load similar to that in Fig. 3-11.  We can then apply a per-phase analysis using 

Fig. 3-14. 

 

Consider the delta-connected load impedances of Fig. 3-17a in a three-phase 

circuit.  In terms of the currents drawn, these are equivalent to the wye-connected 

impedances of Fig. 3-17b, where 

 

 
3y

Z
Z ∆=         (3-27) 

 

The wye-connected equivalent circuit in Fig. 3-17b is easy to analyze on a per 

phase basis. 

 

 

Figure 3-16 Delta connected load. 

aI

anV

bnVcnV

−

+

−
+

−
+

cI

Z ∆

bI c b

a

n

Z ∆

Z ∆

caI

abI
bcI
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SUMMARY/REVIEW QUESTIONS 

 

1. Why is it important to always indicate the directions of currents and the 

polarities of voltages? 

2. What are the meanings of ( )i t , Î , I , and I ? 

3. In a sinusoidal waveform voltage, what is the relationship between the peak 

and the rms values? 

4. How are currents, voltages, resistors, capacitors, and inductors represented in 

the phasor domain?  Express and draw the following as phasors, assuming 

both vφ  and iφ  to be positive: 

 

( ) ( )ˆ ˆ( ) cos and ( ) cosv iv t V t i t I tω φ ω φ= + = + . 

 

5. How is the current flowing through impedance Z φ∠  related to the voltage 

across it, in magnitude and phase?  

6. What are real and reactive powers? What are the expressions for these in 

terms of rms values of voltage and current and the phase difference between 

the two? 

7. What is complex power S ?  How are real and reactive powers related to it?  

What are the expressions for S , P , and Q , in terms of the current and 

voltage phasors? What is the power triangle?  What is the polarity of the 

reactive power drawn by an inductive/capacitive circuit?  

8. What are balanced three-phase systems?  How can their analyses be 

simplified?  What is the relation between line-to-line and phase voltages in 

terms of magnitude and phase?  What are wye and delta connections?   

 
aI

Z Υ

Z ΥZ Υ

c
b

a

Z∆
Z∆

Z∆

aI

bcI

caI abI

c b

a

Figure 3- 17 Delta-Wye transform ation. 

(a ) (b) 
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REFERENCE 
 

Any introductory textbook on Electric Circuits. 

 

PROBLEMS 
 

3-1 Calculate the rms values of currents with the waveforms shown in Fig. P3-

1. 

3-2 Express the following voltages as phasors: (a) 
0

1( )  2 100cos( -30 ) v t t Vω= ×  and (b) 0
2 ( )  2 100cos( 30 ) v t t Vω= × + . 

3-3 The series R-L-C circuit of Fig. 3-3a is in a sinusoidal steady state at a 

frequency of 60 Hz.  V=120 V, R = 1.5 Ω , L= 20 mH, and C=100 Fµ .  

Calculate ( )i t  in this circuit by solving the differential equation Eq. 3-3. 

3-4 Repeat Problem 3-3 using the phasor-domain analysis. 

3-5 In a linear circuit in sinusoidal steady state with only one active source 

V 90 30o= ∠ V, the current in a branch is 5 15oI A= ∠ .  Calculate the 

current in the same branch if the source voltage were to be 0100 0 V∠ . 

3-6 In the circuit of Fig. 3-5 in Example 3-2, show that the real and reactive 

powers supplied at the terminals equal the sum of their individual 

components, that is 2 2andk k k k
k k

P I R Q I X= =∑ ∑ . 

3-7 An inductive load connected to a 120-V (rms), 60-Hz ac source draws 5 

kW at a power factor of 0.8.  Calculate the capacitance required in parallel 

with the load in order to bring the combined power factor to 0.95 

(lagging). 

 

Figure P3-1 Current waveforms. 

tω
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u
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3-8 In the circuit of Fig. P3-8, 1 2 100 0V V= × ∠  and LX = 0.5 Ω .  Show 

1 2, , andV V I  on a phasor diagram and calculate 1P  and 1Q  for the 

following values of I : (a) 2 10 0 A× ∠ , (b) 2 10 180o A× ∠ , (c) 

2 10 90o A× ∠ , and (d) 2 10 90o A× ∠ − . 

3-9 A balanced three-phase inductive load is supplied in steady state by a 

balanced three-phase voltage source with a phase voltage of 120 V rms.  

The load draws a total of 10 kW at a power factor of 0.9.  Calculate the 

rms value of the phase currents and the magnitude of the per-phase load 

impedance, assuming a wye-connected load.  Draw a phasor diagram 

showing all three voltages and currents. 

3-10 A positive sequence (a-b-c), balanced, wye-connected voltage source has 

the phase-a voltage given as 2 100 30o
aV V= × ∠ .  Obtain the time-

domain voltages ( )av t , ( )bv t , ( )cv t , and ( )abv t . 

3-11 Repeat Problem 3-9, assuming a delta-connected load. 

 

SIMULATION PROBLEMS 
 

3-12 Repeat Problem 3-3 in sinusoidal steady state by means of computer 

simulation. 

3-13 Repeat Problem 3-9 in sinusoidal steady state by means of computer 

simulation. 

3-14 Repeat Problem 3-11 in sinusoidal steady state by means of computer 

simulation. 

 

Figure P3-8 Power flow with AC sources. 
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CHAPTER  4 

 

BASIC UNDERSTANDING OF 
SWITCH-MODE  
POWER ELECTRONIC 
CONVERTERS IN 
ELECTRIC DRIVES 
 

 
4-1 INTRODUCTION 
 

As discussed in Chapter 1, electric drives require power-processing units (PPUs) 

to efficiently convert line-frequency utility input in order to supply motors with 

voltages and currents of appropriate form and frequency.  Similar to linear 

amplifiers, power-processing units amplify the input control signals.  However, 

unlike linear amplifiers, PPUs in electric drives use switch-mode power 

electronics principles to achieve high energy efficiency and low cost, size, and 

weight.  In this chapter, we will examine the basic switch-mode principles, 

topologies, and control for the processing of electrical power in an efficient and 

controlled manner. 

 

4-2 OVERVIEW OF POWER PROCESSING UNITS (PPUs) 
 

Fig. 4-1 shows in block-diagram form the structure of commonly used PPUs.  The 

structure consists of a diode rectifier followed by a filter capacitor to convert line-

frequency ac into dc.  The switch-mode (a term we will soon define) converter, 
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under the direction of the controller, supplies the motor with voltages and currents 

of the appropriate form (ac or dc).     

 

4-2-1 Rectifier 
 

In the block-diagram of Fig. 4-1, the role of the rectifier is to convert line-

frequency ac (single-phase or three-phase) into a dc voltage, without any control 

over its magnitude.  The capacitor across the dc output of the rectifier acts as a 

filter that reduces the ripple in the output voltage dV , which we will assume to be 

a constant dc for our discussion in this chapter.  The energy efficiency of this sub-

block can be very high, approximately 99%.   

 

The rectifier-capacitor combination can be viewed as a peak-charging circuit.  

Therefore, waveforms of the current drawn from the utility source are highly 

distorted.  A further discussion of these rectifiers is left to Chapter 16, where the 

techniques of drawing power from the utility by means of sinusoidal currents at a 

unity power factor are described.  Ways of making the power flow bi-directional 

(that is, also back into the utility system) are also discussed in Chapter 16. 

 

4-2-2 Switch-Mode Converters 
 

The dc voltage dV  (assumed to be constant) produced by the rectifier-capacitor 

combination is used as the input voltage to the switch-mode converter in Fig. 4-1.  

The task of this converter, depending on the motor type, is to deliver an 

adjustable-magnitude dc or sinusoidal ac to the motor by amplifying the signal 

from the controller by a constant gain.  The power flow through the switch-mode 

converter must be able to reverse.  In switch-mode converters, as their name 

implies, transistors are operated as switches: either fully on or fully off.  The 

controller

switch-mode
converter

utility

rectifier

dV

+

−
M

Figure 4-1 Block diagram of PPUs. 
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switch-mode converters used for dc- and ac-motor drives can be simply 

illustrated, as in Figs. 4-2a and 4-2b, respectively, where each bi-positional switch 

constitutes a pole.  The dc-dc converter for dc-motor drives in Fig. 4-2a consists 

of two such poles, whereas the dc-to-three-phase ac converter shown in Fig. 4-2b 

for ac-motor drives consists of three such poles.  

 

Typically, PPU efficiencies exceed 95% and can exceed 98% in very large power 

ratings.  Therefore, the energy efficiency of adjustable-speed drives is comparable 

to that of conventional line-fed motors; thus systems with adjustable-speed drives 

can achieve much higher overall system efficiencies (compared to their 

conventional counterparts) in many applications discussed in Chapter 1. 
 

4-3 ANALYSIS OF SWITCH-MODE CONVERTERS 
 

It is sufficient to concentrate on one of the poles, for example pole-A, in the 

converter topologies of Fig. 4-2.  Redrawn in Figure 4-3a, a pole can be 

considered to be the building block of switch-mode converters.  Each pole 

consists of a bi-positional switch (either up or down) whose realization by means 

of two transistors and two diodes is described later.  This pole, shown in Fig. 4-

3a, is a 2-port: on one side there is a voltage port across the capacitor, whose 

voltage dV  cannot change instantaneously; on the other side there is a current port 

with a series inductor whose current Ai  also cannot change instantaneously. 

 

 

 

 

 

Figure 4-2 Switch mode converters for (a) dc- and (b) ac-motor drives. 

MdV

+

−

A

B

M
dV

+

−

A

B

C

(a) (b) 
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4-3-1 Pulse-Width Modulation (PWM) to Synthesize the Output Voltage 
 

The objective of the converter pole in Fig. 4-3a is to achieve the output voltage (at 

the current port) such that its average is of the desired value.  As we will examine 

in detail in this chapter, the pole has a constant gain by which it amplifies the 

control voltage ,c Av  to result in the average output voltage.  The way to 

accomplish this is stated as follows and is mathematically derived later in this 

chapter. 

 

The bi-positional switch “chops” the input dc voltage dV  into a train of voltage 

pulses, shown by the ANv  waveform in Fig. 4-3b, by switching up or down at a 

constant repetition rate (called switching frequency sf ), typically in a range of a 

few kHz up to 50 kHz.  The average value of this waveform depends on the pulse 

width or duration (when ANv  equals dV ), within each switching time-period sT  

( 1/ sf= ).  However, the pulse width, as discussed later, depends on the control 

voltage ,c Av .  (Since the control voltage modulates the pulse width, this process is 

called pulse-width modulation or PWM.)  Hence, the average output voltage of 

the pole in Fig. 4-3a depends on the control voltage - amplified by a constant gain 

by this pole.  In spite of the pulsating (discontinuous) nature of the instantaneous 

, ( )c Av t

ˆ
triV

dV

ANv ( t )

0

0

0

1

t

t

t
ANv

( )Aq t

( )triv t

A sd T

/s sT 1 f=

Figure 4-3 (a) Pole-A; (b) waveforms during a switching 
cycle. 

(a) (b) 

pole-A

PWM-IC
( )triv t

, ( )c Av t

A

N

+

−
ANv ( t )

+

−

( )Aq t

( )Ai t






current
port

voltage
port











dV

( )dAi t



 4-5 

output voltage ( )ANv t , the series inductance at the output of the pole ensures that 

the output current ( )Ai t  remains smooth (continuous). 

 

To modulate the width of the voltage pulses at the current port, inexpensive pulse-

width-modulation integrated circuits (PWM-IC) are available. In these ICs, as 

shown in Fig. 4-3a, the control voltage ,c Av  is compared with a triangular 

waveform signal. The signal-level control voltage ,c Av  is generated by the 

feedback controller responsible for ensuring that the drive delivers the 

commanded torque, speed, and position to the load. (The design of this controller 

is discussed in Chapter 8.) The triangular waveform signal ( )triv t , shown in Figs. 

4-3a and 4-3b, is generated internally in the PWM-IC. The frequency sf  of the 

triangular waveform establishes the switching frequency of the converter.  Both 

sf  and the amplitude t̂riV  of the triangular waveform signal are usually kept 

constant. 

 

4-3-2 Analysis of a Pole as the Building Block 
 

As Fig. 4-3a shows, the control voltage , ( )c Av t  is compared with an internally 

generated triangular waveform ( )triv t .  Based on the comparator output in Fig. 4-

3a, the gate drive (not shown) causes the switch of the pole to be in the “up” 

position if , ( ) ( )c A triv t v t> ; otherwise the switch will be in the “down” position.  

The comparator output can be described mathematically by means of a switching 

function ( )Aq t , shown in Fig. 4-3b, which assumes two values: 1 or 0.  

Comparison of the signal-level waveforms, ,c Av  and triv , results in the 

mathematical switching function ( )Aq t , which dictates the output voltage of the 

pole in the following manner: 

 

,If ( ) ( ) ( ) 1 switch "up" ( )

, ( ) 0 switch "down" ( ) 0
c A tri A AN d

A AN

v t v t q t v t V

otherwise q t v t

> ⇒ = ⇒ ⇒ =
= ⇒ ⇒ =

 (4-1) 

 

From Eq. 4-1, the output voltage can be expressed simply as 
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( ) ( )AN A dv t q t V=        (4-2) 

 

In the pole of Fig. 4-3a, the current at the voltage port, dAi , equals Ai  in the “up” 

position of the switch; otherwise it is zero.  Hence, the mathematical switching 

function ( )Aq t  relates the output current ( )Ai t  to ( )dAi t  as follows: 

 

( ) ( ) ( )dA A Ai t q t i t=        (4-3) 

 

Eqs. 4-2 and 4-3 confirm that in the two-port of Fig. 4-3a, the dependent variables 

( )ANv t  and ( )dAi t  are related to the respective independent variables dV  and ( )Ai t  

by the switching function ( )Aq t . 

 

4-3-3 Average Representation of the Pole 
 

In Fig. 4-3b, we will define the duty-ratio Ad  of pole-A as the ratio of the pulse 

width (the interval during which ( ) 1Aq t =  and the switch is in the “up” position) 

to the switching time-period sT .  With the assumption that the voltage dV  is 

constant, the average value of the output voltage, shown dotted in Fig. 4-3b, can 

be obtained by integrating ANv  over one switching time-period and then dividing 

the integral by sT : 

 

( )
0

1 1
0

A s s

s A s

d T T

AN AN d A d
s sT d T

v v t dt V d d d V
T T

τ τ
 

= = ⋅ + ⋅ = 
  

∫ ∫ ∫   (4-4) 

 

where the bar “-” on top of the v  in ANv  indicates that ANv  is the average value of 

the output voltage during the switching cycle.  This average voltage linearly 

depends on the duty-ratio Ad .  But how does ANv  depend on the control voltage 

vc,A?  We can answer this question if we can determine how the duty-ratio Ad  

depends on the control voltage.  In Fig. 4-3b, notice that if vc,A(t) = t̂riV , the switch 

will be in the “up” position during the entire switching time-period.  Hence, we 

can write that if 
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,
ˆ( ) 1c A tri A AN dv t V d v V= ⇒ = ⇒ =     (4-5a)  

 

In contrast, if vc,A(t) = - t̂riV , the switch will be in the “down” position during the 

entire switching time-period; thus, if 

 

 ,
ˆ( ) 0 0c A tri A ANv t V d v= − ⇒ = ⇒ =     (4-5b) 

 

In the linear range, the control voltage remains within the positive and the 

negative peaks of the triangular waveform ( ,
ˆ ˆ
tri c A triV v V− ≤ ≤ ), resulting in 

piecewise-linear waveforms. Hence, we can utilize the results of the two 

operating points obtained above to derive a general relationship between the 

control voltage and the switch duty-ratio.  Notice from Eqs. 4-5a and 4-5b that the 

duty-ratio changes by unity for a change in the control voltage of ˆ2 triV  (from 

t̂riV− to t̂riV ).  This defines the slope of this relationship as  

 

 
,

1
ˆ2

A

C A tri

slope

d

v V

 ∆ =  ∆  
���

       (4-6a) 

 

which allows us to express the linear relationship between the duty-ratio and the 

control voltage as 

 

 ,

1
ˆ2

A c A

tri

slope

d v offset
V

 
= + 

 
���

 ( ),
ˆ ˆ
tri c A triV v V− ≤ ≤    (4-6b) 

 

By substituting the results of one of the operating points (for example from Eq. 4-

5a, ,
ˆ

c A triv V=  corresponds to 1)Ad =  in Eq. 4-6b, the offset can be calculated as 

1/ 2 .  Substituting the value of the offset into Eq. 4-6b, we have the relationship 

in the linear range of the control voltage variation: 

 



 4-8 

,1 1
ˆ2 2
c A

A

tri

v
d

V
= +   (0 1)Ad≤ ≤     (4-7) 

 

Substituting for Ad  from Eq. 4-7 into Eq. 4-4, 

 

 
�

,ˆ2 2

pole

d d
AN c A

tri

dc offset k

V V
v v

V

  = +      
���

      (4-8) 

 

Eq. 4-8 shows that the average output voltage of the converter pole has an offset 

of / 2dV  and that the pole amplifies the input control signal ,c Av  by a constant 

gain of 

 

 
ˆ2
d

pole

tri

V
k

V
=         (4-9) 

 

Combining Eqs. 4-7 and 4-8 confirms Eq. 4-4, which shows that the average 

output voltage at the current port can be controlled by the duty-ratio Ad  (which, in 

turn, depends on the control voltage).  Usually (for example, in synthesizing a 

sinusoidal ac output, which is described later in this chapter) the control voltage 

continuously varies with time, but much more slowly compared to the switching 

frequency waveform of triv .  Therefore, the duty-ratio in Eq. 4-7 and the average 

output voltage in Eq. 4-8 can be treated as continuous functions of time: ( )Ad t  

and ( )ANv t .  This allows us to express Eq. 4-4 as 

 

( ) ( )AN A dv t d t V=        (4-10) 

 

While designing these systems, we should be mindful of the fact that the 

instantaneous output voltage, in addition to its average value, contains a ripple 

component at the high switching frequency.  Due to the motor inductance shown 

in Fig. 4-3a at the current port, the resulting current Ai  is relatively smooth - a 

continuous function of time. 
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�  Example 4-1   In a switch-mode converter pole-A, 300dV V= , ˆ 5triV V= , and 

20sf kHz= .  Calculate the values of the control signal ,c Av  and the pole duty-

ratio Ad  for the following values of the average output voltage: (a) 250ANv V=  

and (b) 50ANv V= . 

 

Solution     From Eq. 4-8, 

 

 , ,

150
( ) 150 ( )

ˆ2 52
d d

AN c A c A

tri

V V
v v t v t

V

   = + = +     
. 

 

Therefore, 

 

 
( )

,

150
( )

30
AN

c A

v
v t

−
=  

 

and from Eq. 4-7, 

 

 , ,

1 1
( ) 0.5 0.1 ( )

ˆ2 2
A c A c A

tri

d v t v t
V

= + = + × . 

 

 

In the above equations, substituting for ANv  yields 

 

 
,

,

(a) for 250 ,  ( ) 3.333 ,  and 0.833.

(b) for 50 ,  ( ) 3.333 ,  and 0.167.

AN c A A

AN c A A

v V v t V d

v V v t V d

= = =

= = − =
 

�

 

4-3-3-1     Currents ( )Ai t  and ( )dAi t  

 

Due to the series inductance at the current port, the waveform of the current ( )Ai t  

is relatively smooth and consists of linear segments as shown in Fig. 4-4a. 
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Relative to the average value ( )Ai t , shown dotted in Fig. 4-4a, the peak-to-peak 

ripple in ( )Ai t  must be kept low, which otherwise would result in excessive power 

losses and torque pulsations within the motor, as will be discussed in Chapter 15.  

As a first-order approximation, we can neglect this ripple, allowing us to assume 

that the instantaneous current ( )Ai t  equals its average value ( )Ai t , as shown in 

Fig. 4-4b.  In accordance with Eq. 4-3, the ( )dAi t  waveform is also shown in Fig.  

 

4-4b.  Therefore, following the averaging procedure that led to Eqs. 4-4 and 4-10, 

we can derive the expression for the average value dAi  in terms of Ai  in Fig. 4-4b: 

 

 ( ) ( ) ( )dA A Ai t d t i t= ⋅        (4-11) 

 

This average value is shown by a dotted line in Fig. 4-4b.  It is possible to show 

that the relationship in Eq. 4-11 is also valid in the presence of the ripple in ( )Ai t ; 

this ripple is neglected only for the sake of simplifying the discussion (see 

homework problem 4-2). 

 

4-3-3-2     Average Representation of a Pole by an Ideal Transformer 
 

Eqs. 4-10 and 4-11 show that the average voltages and currents at the two ports of 

a pole are each related by the duty-ratio Ad .  Therefore, the switching pole 

redrawn in Fig. 4-5a can be represented on an average basis by means of an ideal 

transformer shown in Fig. 4-5b, where the voltages and the currents on the two 

sides are related by the turns-ratio, similar to Eqs. 4-10 and 4-11.   

t

( )Ai t

Ai0

/s sT 1 f=

t

t

t

sdT

0

0

0
dAi

( )dAi t

( )Aq t

Ai

( )Ai t

(a) (b) 
Figure 4-4 Current waveforms at the two ports. 
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The turns-ratio 1: ( )Ad t  of this electronic transformer can be varied continuously 

with time, recognizing that ( )Ad t  in Eq. 4-7 depends on the input control signal 

, ( )c Av t .  Note that this is not a real transformer, and it is possible to transmit dc as 

well as ac voltages and currents across it. 

 

This simple transformer equivalent circuit allows us to concentrate on the average 

quantities that are of primary interest.  However, once again, we should not lose 

sight of the fact that we are dealing with a switch-mode converter where, within 

every switching-cycle, the instantaneous output voltage ( )ANv t  and the input 

current dAi  are pulsating and are discontinuous functions of time. 

 

4-4 CONVERTER POLE AS A TWO-QUADRANT CONVERTER 
 

In the converter pole of Fig. 4-5a, the voltages dV  and ANv  cannot reverse 

polarity, but the currents Ai  and dAi  can reverse their direction.  This fact makes 

the pole in Fig. 4-5a a two-quadrant converter, as discussed below.  To achieve a 

four-quadrant operation (where the output voltage as well as the output current 

can reverse) necessitates using two or three such poles, as shown in the converters 

of Fig. 4-2. 

 

To examine the two-quadrant operation, let us consider the converter pole 

connected to the circuit of Fig. 4-6a, which consists of a voltage source Ea in 

series with an inductance La and a resistance Ra at the current port.  In Chapter 7 

dV
−

+

( )Aq t

controller

−

+

( )Ai t

( )dAi t

( )ANv t

+

( )Ad tdV
−

+

ˆ
tri

1

2V

( )dAi t

( )ANv t

−

+

1

+

/1 2

, ( )c Av t

( )Ai t

Σ

Figure 4-5 Ideal transformer equivalent of a single pole. 

(a) (b) 
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we will see that a dc motor operating in steady state can be represented by this 

equivalent circuit where Ea (< Vd) is the induced dc voltage, called back-emf, in 

series with the internal inductance La and the resistance Ra.   

 

In examining this two-quadrant operation, we are not interested in the ripple 

components.  Therefore, we will make use of the average representation.  In fact, 

we will assume that the system is operating in a dc steady state; that is, the control 

voltage, and hence the average output voltage and aE  are not changing with time.  

In this dc steady state, as shown in Fig. 4-6b, the average quantities are 

represented by uppercase letters, where  

 

 AN a A d a
A

a a

V E d V E
I

R R

− −= =       (4-12) 

 

Given that a dE V< , which is always the case, it is possible to control Ad  (and 

hence ANV ) to make AI  positive or negative (i.e., to make it flow in either 

direction).   

 

4-4-1 Buck Mode of Operation 
 

The positive AI  (with AN aV E> ) corresponds to the average power flow in the 

direction considered to be positive.  Under these conditions, the converter is in the 

“buck” mode of operation. In this mode, the input voltage dV  is “bucked” by the 

Figure 4-6 (a) Two-quadrant converter; (b) average representation. 

/1 2
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dV
−

+

( )Aq t

−

+

( )Ai t
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

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converter to produce a lower voltage, and the power flows from the higher voltage 

dV  to the side of the lower voltage ANV  (and aE ).   

 

4-4-2 Boost Mode of Operation 
 

By adjusting the switch duty-ratio Ad  such that AN aV E< , AI  reverses direction 

and the average power flow is from a smaller voltage aE  (and ANV ) to a larger 

voltage dV , thus implying a “boost” mode of operation.  In either mode, the 

average representation of the switching converter pole, shown in Fig. 4-6b by an 

ideal transformer, is valid. 

 

The above discussion shows that the converter pole of Fig. 4-6a is capable of 

operating in both modes: buck and boost, a fact that is further illustrated by the 

following example.  The ripple in the output current is illustrated by Example 4-3. 

 

�  Example 4-2   In the 2-quadrant converter of Fig. 4-6a, dV = 100V, aE  = 75V, 

and 0.5aR = Ω . In dc steady state, calculate ANV  and Ad  if (a) AI  = 5 A, and (b) 

AI  = -5 A. 

 

Solution 

(a) For AI  = 5 A, from Eq. 4-12, 

 

77.5AN a a AV E R I V= + =  and 0.775AN
A

d

V
d

V
= =  

The waveforms of ( )ANv t , ANV  and aE  are shown in Fig. 4-7a. 

 

(b) For AI  = -5 A, from Eq. 4-12, 

 

72.5AN a a AV E R I V= + =  and 0.725AN
A

d

V
d

V
= = . 

The waveforms of ( )ANv t , ANV , and aE  are shown in Fig. 4-7b.  �  
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�  Example 4-3   In Example 4-2, with AI  = 5 A, calculate the peak-to-peak 

ripple in ( )Ai t  if La = 1 mH  and 20sf kHz= . 

 

Solution     The pulsating output voltage waveform of ( )ANv t in Fig. 4-7a can be 

expressed as the sum of its average (dc) component ANV and the ripple component 

( )ripplev t : 

 

 ( ) ( )AN AN ripplev t V v t= + .      (4-13) 

 

The ripple-component waveform repeats with the same frequency as the 

switching frequency and contains components at the switching frequency and its 

multiples.  The voltage in Eq. 4-13 is applied to the linear circuit, as shown in Fig. 

4-8a.   

 

To analyze this circuit, we can draw it at the dc and the ripple frequency, as 

shown by Figs. 4-8b and 4-8c, respectively, and then apply the principle of 

superposition.  In Fig. 4-8a, 

 

Figure 4-7 Waveforms of                                 .  ( ) , and AN t AN av V E
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+

−
aE

+

−

aR aL( )Ai t

+

−
ANV
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 ( ) ( )A A ripplei t I i t= +        (4-14) 

 

where AI  in the dc circuit of Example 4-2 is given as 5 A.  In the ripple-frequency 

circuit of Fig. 4-8c, the reactance of the inductor aL  at the switching frequency 

and at its multiples is much larger than aR ; therefore, it is reasonable to neglect 

aR .  The ripple voltage is plotted in Fig. 4-9a.  Since ( )ripplev t  has a zero average 

value, the same will be true for ( )ripplei t  in Fig. 4-8c.  During the interval sdT , 

( )ripple d ANv V V= −  appears across the inductor in Fig. 4-8c.  Therefore, the peak-to-

peak ripple in the output current can be calculated as follows, where 

1/ 50s sT f sµ= = : 

 

 
100 77.5

( ) 0.775 50 0.87
1000

d AN
A A s

a

V V
i p p d T A

L
µ

µ
− −∆ − = = × =  (4-15) 

 

The waveform for ( )ripplei t is plotted in Fig. 4-9b.  Note that its average value is 

zero.  Using Eq. 4-14, the total current ( )Ai t  is plotted in Fig. 4-9c.  �  

 

4-5 IMPLEMENTATION OF BI-POSITIONAL SWITCHES 

 

So far we have assumed a hypothetical bi-positional switch, which gives the 

converter pole a bi-directional power flow capability by operating in the buck or 

the boost mode. This bi-positional switch is realized as shown in Fig. 4-10a, 

( )ripplei t

0 t

( )ripplev t

0

sT

sdT t

d ANV V−

ANV

t

AI

( )Ai t

0(a) 

(b) 

(c) 

Figure 4-9 Waveforms for                                                . ( ), ( )  and ( )ripple ripple Av t i t i t
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where the gate-drive circuitry is omitted for simplification. In the transistors 

shown, if gated on, the current can only flow in the direction of the arrow. 

 

The transistor-diode combination, shown on the left side in Fig. 4-10a, facilitates 

the buck mode of operation when Ai  is positive.  The transistor-diode combination 

on the right side in Fig. 4-10a facilitates the boost mode of operation when Ai  is 

negative. The previously defined switching function ( )Aq t  should now be 

considered a set of two complementary signals in the sense that 

 

( ) ( )A Aq t q t+ =         (4-16a) 

and 

( ) the complement of ( ) 1 ( )A A Aq t q t q t− = = −     (4-16b) 

 

where ( )A Aq q+ =  through the gate drive controls the upper transistor, gating it to be 

fully on when 1Aq+ = , otherwise off. Similarly, ( 1 )A Aq q− = − controls the bottom 

transistor. A small blanking time between the two complementary gate signals, 

introduced to avoid “shoot-through,” is neglected in the idealized discussion here, 

the details of which are covered in power electronics courses. 

 

Power dissipation in transistors is kept low by operating them as switches, fully 

on or fully off, even when the switching frequencies range from approximately 2 

kHz in large motor drives to 50 kHz in very small drives.  In Fig. 4-10b, the 

collector current ci  is plotted as a function of the voltage CEV  across one of the 

triv
,c Av A

q−
A

q+
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+
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Figure 4-10 (a) Bi-positional switch using transistors; (b) switching trajectory. 
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transistors, for various values of the gate voltages.  Controlling the gate voltage 

dictates the state of the transistor: on or off.  During the transition from one state 

to the other, the transistor voltage and the current are simultaneously high, making 

instantaneous power dissipation in the transistor large.  However, since the 

transition is complete in typically much less than one sµ , the average power loss 

due to the switching of transistors is kept small.  In the on-state, when the 

transistor is conducting current, the voltage drop onV across the transistor is  ~1 V, 

resulting in only a small amount of conduction losses. 

 

4-6 SWITCH-MODE CONVERTERS FOR DC- AND AC-MOTOR 
DRIVES  

 
The converters used in dc and three-phase ac motor drives consist of two poles, 

and three poles, respectively, as shown in Fig. 4-2.  By using the average 

representation of a pole discussed earlier, we can quickly describe the basic 

principles underlying the operation of these converters. 

 

4-6-1 Converters for DC-Motor Drives (Four-Quadrant Capability) 
 

The dc-drive converter with two poles is shown in Fig. 4-11a, where ( )cv t  is the 

control voltage delivered by the feedback controller.   

 

For pole-A, the control voltage is the same as ( )cv t ; that is, , ( ) ( )c A cv t v t= .  For 

pole-B, the control voltage is made equal to the negative of ( )cv t ; that is, 

, ( ) ( )c B cv t v t= − .  Comparing these control voltages with the same triangular 

waveform results in the switching functions ( )Aq t  and ( )Bq t , as well as the 

following duty-ratios for the two poles: 
 

 
( )1 1

( )
ˆ2 2

c
A

tri

v t
d t

V
= +  and  

( )1 1
( )

ˆ2 2
c

B

tri

v t
d t

V
= −    (4-17) 

 

The converter, in terms of average quantities, is shown in Fig. 4-11b, where 
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 ( ) ( )
ˆ2 2

d d
AN c

tri

V V
v t v t

V
= +  and ( ) ( )

ˆ2 2
d d

BN c

tri

V V
v t v t

V
= −  (4-18) 

 

At the output terminals, the output voltage is the difference between the pole 

output voltages.  Therefore, as illustrated in Fig. 4-11c, 

 

 

�

( ) ( ) ( ) ( )
ˆ

PWM

d
o AN BN c

tri

k

V
v t v t v t v t

V

 
= − =  

 
 

or 

 ( ) ( )o PWM cv t k v t=        (4-19) 

 

where, in a dc-dc converter for dc-motor drives, the constant gain /o cv v  is 

 
ˆ

d
PWM

tri

V
k

V
=         (4-20) 

(a) (b) 

Figure 4-11 (a) Switching converter for dc-dc motor drives; (b) and (c) its average representation. 
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For determining the turns-ratio in the combined representation of two poles in 

Fig. 4-11c, we can define a duty-ratio ( )d t  where 
 

 
( )

( ) ( ) ( )
ˆ

c
A B

tri

v t
d t d t d t

V
= − =   ( )1 ( ) 1d t− ≤ ≤    (4-21) 

 

The duty-ratios Ad  and Bd  are limited to the range 0  to 1  by their physical 

definition, but the derived duty ratio ( )d t  can range from 1−  to 1+ .   
 

Eqs. 4-19 and 4-20 show that the dc-dc converter amplifies the control voltage by 

a constant gain PWMk  to produce an average output voltage.  This average output 

voltage can be positive or negative, depending on the control voltage.  Although 

we have not specifically discussed the output current in the converter of Fig. 4-11, 

we know from our previous discussion that the current through a pole can flow in 

either direction.  Therefore, in the converter of Fig. 4-11 consisting of two poles, 

the current can flow in either direction, independent of the polarity of the output  

 

voltage.  This gives the converter a four-quadrant capability to drive a dc machine 

in forward or reverse direction, in motoring as well as in regenerative braking 

mode. 
 

4-6-2 Converters for Three-Phase AC-Motor Drives 
 

The ac-drive converter with three poles is shown in Fig. 4-12a, where the 

feedback controller determines the amplitude ĉV  and the frequency 1f  of the 

control voltage.  This information is used in the PWM-IC to generate three control 

voltages: 
 

0 0
, 1 , 1 , 1

ˆ ˆ ˆ( ) sin( ) ( ) sin( 120 ) ( ) sin( 240 )c A c c B c c C cv t V t v t V t v t V tω ω ω= = − = − (4-22) 

 

Comparing these control voltages with the same triangular waveform results in 

the switching functions ( )Aq t , ( )Bq t , and ( )Cq t  with the following duty-ratios for 

the three poles: 
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1

0
1

0
1

ˆ1 1
( ) sin( )

ˆ2 2

ˆ1 1
( ) sin( 120 )

ˆ2 2

ˆ1 1
( ) sin( 240 )

ˆ2 2

c
A

tri

c
B

tri

c
C

tri

V
d t t

V

V
d t t

V

V
d t t

V

ω

ω

ω

= +

= + −

= + −

      (4-23) 

 

The converter, in terms of the average quantities, is shown in Fig. 4-12b, where 
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0
1

0
1

ˆ
( ) sin( )

ˆ2 2

ˆ
( ) sin( 120 )

ˆ2 2

ˆ
( ) sin( 240 )

ˆ2 2

d d c
AN

tri

d d c
BN

tri

d d c
CN

tri

V V V
v t t

V

V V V
v t t

V

V V V
v t t

V

ω

ω

ω

= +

= + −

= + −

     (4-24) 

 

In the above analysis, the phase angle for phase-A is arbitrarily assumed to be 

zero; in fact, it can be whatever value is desired.  We should also note that the dc-

offsets of Eq. 4-24 also cancel each other in the line-to-line voltages ABv , BCv , and 

CAv . 

Figure 4-12 (a) Switch mode inverter for ac drives. 
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Under a balanced sinusoidal operating condition, we can show that the average 

potential at the load-neutral “n” is the same as the mid-point of the dc bus, that is, 

/ 2nN dv V= .  Therefore, the average voltages appearing across each phase of the 

load (from phase to load-neutral) are similar to those in Eq. 4-24, except without 

the dc-offset of / 2dV : 

 

1 ,
ˆ( ) sin( ) ( )

ˆ2

pole

d
An c pole c A

tri

k

V
v t V t k v t

V
ω

 
= = 

 
���

     (4-25a) 

0
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tri

k

V
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V
ω
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 
���

    (4-25b) 

Figure 4-12 (b) Average representation of the three-phase converter. 
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0
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ˆ( ) sin( 240 ) ( )
ˆ2

pole

d
Cn c pole c C

tri

k

V
v t V t k v t

V
ω

 
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    (4-25c) 

 

where 
ˆ2
d

pole

tri

V
k

V
=  (as given by Eq. 4-9) is the gain by which each pole amplifies 

its control voltage.  Eq. 4-25 shows that the converter for ac-motor drives 

generates three-phase sinusoidal voltages of the desired frequency and amplitude.  

 

4-7 POWER SEMICONDUCTOR DEVICES 
 

Electric drives owe their market success, in part, to rapid improvements in power 

semiconductor devices and control ICs.  Switch-mode power electronic converters 

require diodes and transistors, which are controllable switches that can be turned 

on and off by applying a small voltage to their gates.  These power devices are 

characterized by the following quantities: 

 
1. Voltage Rating is the maximum voltage that can be applied across a 

device in its off-state, beyond which the device "breaks down" and an 

irreversible damage occurs. 

 

2. Current Rating is the maximum current (expressed as instantaneous, 

average, and/or rms) that a device can carry, beyond which excessive 

heating within the device destroys it. 

 

3. Switching Speeds are the speeds with which a device can make a 

transition from its on-state to off-state, or vice versa.  Small switching 

times associated with fast-switching devices result in low switching losses, 

or considering it differently, fast-switching devices can be operated at high 

switching frequencies. 

 

4. On-State Voltage is the voltage drop across a device during its on-state 

while conducting a current.  The smaller this voltage is, the smaller the on-

state power loss. 
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4-7-1 Device Ratings 
 

Available power devices range in voltage ratings of several kV (up to 9 kV) and 

current ratings of several kA (up to 5 kA).  Moreover, these devices can be 

connected in series and parallel to satisfy any voltage and current requirements.  

Their switching speeds range from a fraction of a microsecond to a few 

microseconds, depending on their other ratings.  In general, higher power devices 

switch more slowly than their low power counterparts. The on-state voltage is 

usually in the range of 1 to 3 volts. 

 

4-7-2 Power Diodes 
 
Power diodes are available in voltage ratings of several kV (up to 9 kV) and 

current ratings of several kA (up to 5 kA).  The on-state voltage drop across these 

diodes is usually of the order of 1 V.  Switch-mode converters used in motor 

drives require fast-switching diodes. On the other hand, the diode rectification of 

line-frequency ac can be accomplished by slower switching diodes, which have a 

slightly lower on-state voltage drop. 

 

4-7-3 Controllable Switches 
 

Transistors are controllable switches which are available in several forms: 

Bipolar-Junction Transistors (BJTs), metal-oxide-semiconductor field-effect 

transistors (MOSFETs), Gate Turn Off (GTO) thyristors, and insulated-gate 

bipolar transistor (IGBTs).  In switch-mode converters for motor-drive 

applications, there are two devices which are primarily used: MOSFETs at low 

power levels and IGBTs in power ranges extending to MW levels.  The following 

subsections provide a brief overview of their characteristics and capabilities.   

 

4-7-3-1  MOSFETs 
 

In applications at voltages below 200 volts and switching frequencies in excess of 

50 kHz, MOSFETs are clearly the device of choice because of their low on-state 

losses in low voltage ratings, their fast switching speeds, and their ease of control.  

The circuit symbol of an n-channel MOSFET is shown in Fig. 4-13a.  It consists 
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of three terminals: drain (D), source (S), and gate (G).  The main current flows 

between the drain and the source terminals.  MOSFET i - v  characteristics for 

various gate voltage values are shown in Fig. 4-13b; it is fully off and 

approximates an open switch when the gate-source voltage is zero.  To turn the 

MOSFET on completely, a positive gate-to-source voltage, typically in a range of 

10 to 15 volts, must be applied.  This gate-source voltage should be continuously 

applied in order to keep the MOSFET in its on-state. 

 

4-7-3-2  Insulated-Gate Bipolar Transistors (IGBTs) 
 

IGBTs combine the ease of control of MOSFETs with low on-state losses, even at 

fairly high voltage ratings.  Their switching speeds are sufficiently fast for 

switching frequencies up to 30 kHz.  Therefore, they are used in a vast voltage 

and power range - from a fractional kW to many MW. 

 

The circuit symbol for an IGBT is shown in Fig. 4-14a and the i-v characteristics 

are shown in Fig. 4-14b.  Similar to MOSFETs, IGBTs have a high impedance 

gate, which requires only a small amount of energy to switch the device.  IGBTs 

have a small on-state voltage, even in devices with large blocking-voltage ratings 

(for example, Von is approximately 2 V in 1200-V devices).  IGBTs can be 

designed to block negative voltages, but most commercially available IGBTs, by 

design to improve other properties, cannot block any appreciable reverse-polarity 

voltage (similar to MOSFETs). 

 

Insulated-gate bipolar transistors have turn-on and turn-off times on the order of 1 

microsecond and are available as modules in ratings as large as 3.3 kV and 1200 

A. Voltage ratings of up to 5 kV are projected. 
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Figure 4-13 MOSFET characteristics. 
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4-7-4 "Smart Power" Modules including Gate Drivers 
 

A gate-drive circuitry, shown as a block in Fig. 4-15, is required as an 

intermediary to interface the control signal coming from a microprocessor or an 

analog control integrated circuit (IC) to the power semiconductor switch.  Such 

gate-drive circuits require many components, passive as well as active.  An 

electrical isolation may also be needed between the control-signal circuit and the 

circuit in which the power switch is connected.  The gate-driver ICs, which 

include all of these components in one package, have been available for some 

time. 

Lately, "Smart Power" modules, also called Power Integrated Modules (PIMs), 

have become available.  Smart power modules combine more than one power 

switch and diode, along with the required gate-drive circuitry, into a single 

module.  These modules also include fault protection and diagnostics.  Such 

modules immensely simplify the design of power electronic converters. 

 

 

Figure 4-15 Block diagram of gate-drive circuit. 
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Figure 4-14 IGBT symbol and characteristics. 
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4-7-5  Cost of MOSFETs and IGBTs  
 

As these devices evolve, their relative cost continues to decline.  The cost of 

single devices in 1999 was approximately 0.25 $/A for 600-V devices and 0.50 

$/A for 1200-V devices.  Power modules for the 3 kV class of devices cost 

approximately 1 $/A. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. What is the function of PPUs? 

2. What are the sub-blocks of PPUs? 

3. What are the roles of the rectifier and the filter-capacitor sub-blocks? 

4. Qualitatively, how does a switch-mode amplifier differ from a linear 

amplifier? 

5. Why does operating transistors as switches result in much smaller losses 

compared to operating them in their linear region? 

6. How is a bi-positional switch realized in a converter pole? 

7. What is the gain of each converter pole? 

8. How does a switch-mode converter pole approach the output of a linear 

amplifier? 

9. What is the meaning of ( )ANv t ? 

10. How is the pole output voltage made linearly proportional to the input control 

signal? 

11. What is the physical significance of the duty-ratio, for example ( )Ad t ? 

12. How is pulse-width-modulation (PWM) achieved and what is its function? 

13. Instantaneous quantities on the two sides of the converter pole, for example 

pole-A, are related by the switching signal ( )Aq t .  What relates the average 

quantities on the two sides? 

14. What is the equivalent model of a switch-mode pole in terms of its average 

quantities? 

15. How is a switch-mode dc-dc converter which can achieve an output voltage of 

either polarity and an output current flowing in either direction realized? 

16. What is the frequency content of the output voltage waveform in dc-dc 

converters? 
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17. In a dc-drive converter, how is it possible to keep the ripple in the output 

current small, despite the output voltage pulsating between 0  and dV , or 0  

and dV− , during each switching cycle? 

18. What is the frequency content of the input dc current?  Where does the 

pulsating ripple component of the dc-side current flow through? 

19. How is bi-directional power flow achieved through a converter pole? 

20. What makes the average of the dc-side current in a converter pole related to 

the average of the output current by its duty-ratio? 

21. How are three-phase, sinusoidal ac output voltages synthesized from a dc 

voltage input? 

22. What are the voltage and current ratings and the switching speeds of various 

power semiconductor devices? 
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PROBLEMS 
 

4-1 In a switch-mode converter pole-A, 150dV V= , ˆ 5triV V= , and 20sf kHz= .  

Calculate the values of the control signal ,c Av  and the pole duty-ratio Ad  

during which the switch is in its top position, for the following values of the 

average output voltage: 125ANv V=  and 50ANv V= . 

4-2 In a converter pole, the ( )Ai t  waveform is as shown in Fig. 4-4a.  Including 

the ripple, show that the relationship of Eq. 4-11 is valid. 
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DC-DC Converters (Four-Quadrant Capability) 

 

4-3 A switch-mode dc-dc converter uses a PWM-controller IC which has a 

triangular waveform signal at 25 kHz with t̂riV  = 3 V.  If the input dc source 

voltage 150dV V= , calculate the gain PWMk  of this switch-mode amplifier. 

4-4 In a switch-mode dc-dc converter, 0.8
ˆ

c

tri

v

V
=  with a switching frequency 

20sf kHz=  and 150dV V= .  Calculate and plot the ripple in the output 

voltage ( )ov t . 

4-5 A switch-mode dc-dc converter is operating at a switching frequency of 20 

kHz, and dV = 150 V.  The average current being drawn by the dc motor is 

8.0 A.  In the equivalent circuit of the dc motor, Ea = 100 V, Ra = 0.25 Ω , 

and La = 4 mH.  (a) Plot the output current and calculate the peak-to-peak 

ripple and (b) plot the dc-side current. 

4-6 In Problem 4-5, the motor goes into regenerative braking mode.  The 

average current being supplied by the motor to the converter during braking 

is 8.0 A.  Plot the voltage and current waveforms on both sides of this 

converter.  Calculate the average power flow into the converter. 

4-7 In Problem 4-5, calculate dAi , dBi , and ( )d di I= . 

4-8 Repeat Problem 4-5 if the motor is rotating in the reverse direction, with the 

same current draw and the same induced emf aE  value of the opposite 

polarity. 

4-9 Repeat Problem 4-8 if the motor is braking while it has been rotating in the 

reverse direction.  It supplies the same current and produces the same 

induced emf aE  value of the opposite polarity. 

4-10 Repeat problem 4-5 if a bi-polar voltage switching is used in the dc-dc 

converter.  In such a switching scheme, the two bi-positional switches are 

operated in such a manner that when switch-A is in the top position, switch-

B is in its bottom position, and vice versa.  The switching signal for pole-A 

is derived by comparing the control voltage (as in Problem 4-5) with the 

triangular waveform. 

 



 4-29 

DC-to-Three-Phase AC Inverters 

 

4-11 Plot ( )Ad t  if the output voltage of the converter pole-A is 

1( ) 0.85 sin( )
2 2
d d

AN

V V
v t tω= + , where 1 2 60 /rad sω π= × . 

4-12 In the three-phase dc-ac inverter of Fig. 4-12a, 300dV V= , ˆ 1triV V= , 

ˆ 0.75cV V= , and 1 45f Hz= .  Calculate and plot ( ), ( ), ( )A B Cd t d t d t , 

( ), ( ), ( )AN BN CNv t v t v t , and ( )Anv t , ( )Bnv t , and ( )Cnv t . 

4-13 In the balanced three-phase dc-ac inverter shown in Fig. 4-12b, the phase-A 

average output voltage is 1( ) 0.75sin( )
2
d

An

V
v t tω= , where 300dV V=  and 

1 2 45 /rad sω π= × .  The inductance L  in each phase is 5 mH.  The ac-

motor internal voltage in phase A can be represented as 
0

1( ) 106.14sin( 6.6 )Ae t t Vω= − , assuming this internal voltage to be purely 

sinusoidal. (a) Calculate and plot ( )Ad t , ( )Bd t , and ( )Cd t , (b) sketch ( )Ai t , 

and (c) sketch ( )dAi t . 

4-14 In Problem 4-13, calculate and plot ( )di t , which is the average dc current 

drawn from the dc capacitor bus in Fig. 4-12b. 

 

SIMULATION PROBLEMS 
 

4-15 In a switch-mode converter pole-A, 300dV V=  and ˆ 5triV V= .  The values of 

sf  are specified below.  The control voltage ( )cv t  is a sine wave, with an 

amplitude ˆ 3.75cV V=  and 1 60f Hz= .  With respect to a hypothetical mid-

point “o” of the dc input bus voltage, the idealized pole output is given as 

�

/ 2
( ) ( )

ˆ

pole

d
Ao c

tri

k

V
v t v t

V
= .  Now, assume that the control voltage has a discrete 

and constant value during each switching-frequency time-period sT .  This 

value equals the value of the control voltage at the beginning of each sT .  

Based on these discrete values of the control voltage, calculate the average 
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value ,Ao kv  over every k-th switching time-period.  Plot ( )Aov t  and ,Ao kv .  In 

a separate figure, plot the difference of these two output voltage values.  

Repeat this procedure for two values of switching frequency, where both 

values are chosen to be extremely low (for modern power semiconductor 

devices) for ease of plotting: (a) 900sf Hz=  and (b) 1.8sf kHz= .  Which 

switching-frequency value leads to a better approximation of the idealized 

output?  What would you expect if the switching frequency is increased to 

18 kHz? 

4-16 Simulate a two-quadrant pole of Fig. 4-6a in dc steady state.  The nominal 

values are as follows: dV = 200 V, 0.37aR = Ω , aL  = 1.5 mH, aE  = 136 V, 

ˆ 1triV V= , and , 0.416c Av V= .  The switching frequency 20sf kHz= .  In dc 

steady state, the average output current is 10AI A= .  (a) Obtain the plot of 

( )ANv t , ( )Ai t , and ( )dAi t , (b) obtain the peak-peak ripple in ( )Ai t  and 

compare it with its value obtained analytically, and (c) obtain the average 

values of ( )Ai t  and ( )dAi t , and show that these two averages are related by 

the duty-ratio Ad . 

4-17 Repeat Problem 4-16 by calculating the value of the control voltage such 

that the converter pole is operating in the boost mode, with 10AI A= − . 

 

DC-DC Converters 

 

4-18 Simulate the dc-dc converter of Fig. 4-11a in dc steady state.  The nominal 

values are as follows: dV = 200 V, 0.37aR = Ω , aL  = 1.5 mH, ˆ 1triV V= , and 

, 0.416c Av V= .  The switching frequency 20sf kHz= .  In the dc steady 

state, the average output current is 10AI A= .  (a) Obtain the plot of ( )ov t , 

( )oi t , and ( )di t , (b) obtain the peak-peak ripple in ( )oi t  and compare it with 

its value obtained analytically, and (c) obtain the average values of ( )oi t  and 

( )di t , and show that these two averages are related by the duty-ratio d  in 

Eq. 4-21. 

4-19 In Problem 4-18, apply a step-increase in the control voltage to 0.6 V at 0.5 

ms and observe the output current response. 
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4-20 Repeat Problem 4-19 with each converter pole represented on its average 

basis. 

 

DC-to-Three-Phase AC Inverters 

 

4-21 Simulate the three-phase ac inverter on an average basis for the system 

described in Problem 4-13.  Obtain the various waveforms. 

4-22 Repeat Problem 4-21 for a corresponding switching circuit and compare the 

switching waveforms with the average waveforms in Problem 4-21. 
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CHAPTER  5 
 

MAGNETIC CIRCUITS 
 
 

5-1 INTRODUCTION 

 

The purpose of this chapter is to review some of the basic concepts associated 

with magnetic circuits and to develop an understanding of transformers, which is 

needed for the study of ac motors and generators.   

 

5-2 MAGNETIC FIELD PRODUCED BY CURRENT-CARRYING 
CONDUCTORS 

 
When a current i  is passed through a conductor, a magnetic field is produced.  

The direction of the magnetic field depends on the direction of the current.  As 

shown in Fig. 5-1a, the current through a conductor, perpendicular and into the 

paper plane, is represented by “× ����� ����� �	

���� 

��	���� ��������� ������ ��� ��

clockwise direction.  Conversely, the current out of the paper plane, represented 

by a dot, produces magnetic field in a counter-clockwise direction, as shown in 

Fig. 5-1b. 

 
 

3i

2i

1i
H

dl

(a) (b) (c) 
Figure 5-1 Magnetic field; Ampere’s Law. 
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5-2-1 Ampere’s Law 
 

The magnetic-field intensity H produced by current-carrying conductors can be 

obtained by means of Ampere’s Law, which in its simplest form states that, at 

anytime, the line (contour) integral of the magnetic field intensity along any 

closed path equals the total current enclosed by this path.  Therefore, in Fig. 5-1c, 

 

 Hd i= ∑∫ ��         (5-1) 

 

where ∫� represents a contour or a closed-line integration.  Note that the scalar H 

in Eq. 5-1 is the component of the magnetic field intensity (a vector field) in the 

direction of the differential length d�  along the closed path.   Alternatively, we 

can express the field intensity and the differential length to be vector quantities, 

which will require a dot product on the left side of Eq. 5-1. 

 

�  Example 5-1   Consider the coil in Fig. 5-2, which has 25N =  turns. The 

toroid on which the coil is wound has an inside diameter 5ID cm=  and an 

outside diameter 5.5OD cm= .  For a current 3i A= , calculate the field intensity 

H  along the mean-path length within the toroid. 

 

i

OD

ID

OD

ID

mr

(a) (b) 
Figure 5-2 Toroid. 

mean-path length m�
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Solution     Due to symmetry, the magnetic field intensity mH  along a circular 

contour within the toroid is constant.  In Fig. 5-2, the mean radius 

1
( )

2 2m

OD ID
r

+= . Therefore, the mean path of length ( 2 0.165 )m mr mπ= =�  

encloses the current i  N-times, as shown in Fig. 5-2b.  Therefore, from Ampere’s 

Law in Eq. 5-1, the field intensity along this mean path is 

 

 m
m

Ni
H =

�
        (5-2) 

 

which for the given values can be calculated as 

 

 
25 3

454.5 /
0.165mH A m

×= = . 

 

If the width of the toroid is much smaller than the mean radius mr , it is reasonable 

to assume a uniform mH  throughout the cross-section of the toroid. �  

 

The field intensity in Eq. 5-2 has the units of [A/m], noting that “turns” is a unit-

less quantity.  The product Ni  is commonly referred to as the ampere-turns or 

mmf F  that produces the magnetic field.  The current in Eq. 5-2 may be dc, or 

time varying.  If the current is time varying, the relationship in Eq. 5-2 is valid on 

an instantaneous basis; that is, ( )mH t  is related to ( )i t  by / mN � . 

 

5-3 FLUX DENSITY B AND THE FLUX φ  

 

At any instant of time t for a given H-field, the density of flux lines, called the 

flux density B (in units of [T ] for Tesla) depends on the permeability µ  of the 

material on which this H-field is acting.  In air,  

 

 oB Hµ=  74 10o

henries

m
µ π −  = ×   

    (5-3) 
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where oµ is the permeability of air or free space. 

 

5-3-1 Ferromagnetic Materials 

 

Ferromagnetic materials guide magnetic fields and, due to their high permeability, 

require small ampere-turns (a small current for a given number of turns) to 

produce the desired flux density. These materials exhibit the multi-valued 

nonlinear behavior shown by their B-H characteristics in Fig. 5-3a.  Imagine that 

the toroid in Fig. 5-2 consists of a ferromagnetic material such as silicon steel.  If 

the current through the coil is slowly varied in a sinusoidal manner with time, the 

corresponding H-field will cause one of the hysteresis loops shown in Fig. 5-3a to 

be traced.  Completing the loop once results in a net dissipation of energy within 

the material, causing power loss referred as the hysteresis loss.   

 

Increasing the peak value of the sinusoidally-varying H-field will result in a 

bigger hysteresis loop.  Joining the peaks of the hysteresis loop, we can 

approximate the B-H characteristic by the single curve shown in Fig. 5-3b.  At 

low values of magnetic field, the B-H characteristic is assumed to be linear with a 

constant slope, such that  

 

m m mB Hµ=         (5-4a) 

 

mB

mH

satB

oµ

oµ

mµ

mB

mH

(a) (b) 

Figure 5-3 B-H  characteristics of ferromagnetic materials. 
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where mµ  is the permeability of the ferromagnetic material.  Typically, the mµ  of 

a material is expressed in terms of a permeability rµ  relative to the permeability 

of air: 

 

m r oµ µ µ=   ( m
r

o

µµ
µ

= )     (5-4b) 

 

In ferromagnetic materials, the mµ  can be several thousand times larger than the 

oµ .   

 

In Fig. 5-3b, the linear relationship (with a constant mµ ) is approximately valid 

until the "knee" of the curve is reached, beyond which the material begins to 

saturate.  Ferromagnetic materials are often operated up to a maximum flux 

density, slightly above the "knee" of 1.6 T to 1.8 T , beyond which many more 

ampere-turns are required to increase flux density only slightly.  In the saturated 

region, the incremental permeability of the magnetic material approaches oµ , as 

shown by the slope of the curve in Fig. 5-3b. 

 

In this course, we will assume that the magnetic material is operating in its linear 

region and therefore its characteristic can be represented by m m mB Hµ= , where 

mµ �
���������������� 

 
5-3-2 Flux φ  

 

Magnetic flux lines form closed paths, as shown in Fig. 5-4’s toroidal magnetic 

core, which is surrounded by the current-carrying coil.  The flux in the toroid can 

be calculated by selecting a circular area mA  in a plane perpendicular to the 

direction of the flux lines.  As discussed in Example 5-1, it is reasonable to 

assume a uniform mH  and hence a uniform flux-density mB  throughout the core 

cross-section.  Substituting for mH  from Eq. 5-2 into Eq. 5-4a, 
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 m m
m

Ni
B µ=

�
        (5-5) 

 

where mB  is the density of flux lines in the core.  Therefore, making the 

assumption of a uniform mB , the flux mφ  can be calculated as 

 

m m mB Aφ =         (5-6) 

 

where flux has the units of Weber [Wb].  Substituting for mB  from  Eq. 5-5 into 

Eq. 5-6, 

 

 

m

m m m
m m

m m

Ni Ni
A

A

φ µ

µ
ℜ

 
= =    

 
 

� �

�����

      (5-7) 

where Ni  equals the ampere-turns (or mmf F ) applied to the core, and the term 

within the brackets on the right side is called the reluctance mℜ  of the magnetic 

core.  From Eq. 5-7 

 

 [ / ]m
m

m m

A Wb
Aµ

ℜ = �
       (5-8) 

 

mA

mφ

Figure 5-4 Toroid with flux      .  mφ
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Eq. 5-7 makes it clear that the reluctance has the units [A/Wb].  Eq. 5-8 shows that 

the reluctance of a magnetic structure, for example the toroid in Fig. 5-4, is 

linearly proportional to its magnetic path length and inversely proportional to both 

its cross-sectional area and the permeability of its material.   

 

Eq. 5-7 shows that the amount of flux produced by the applied ampere-turns F  

( Ni= ) is inversely proportional to the reluctance ℜ ; this relationship is 

analogous to Ohm’s Law ( /I V R= ) in electric circuits in dc steady state. 

 

5-3-3 Flux Linkage 
 

If all turns of a coil, for example the one in Fig. 5-4, are linked by the same flux 

φ , then the coil has a flux linkage λ , where 

 

Nλ φ=         (5-9) 

 

�  Example 5-2   In Example 5-1, the core consists of a material with 2000rµ = .  

Calculate the flux density mB  and the flux mφ . 

 

Solution     In Example 5-1, we calculated that 454.5 /mH A m= .  Using Eqs. 5-

4a and 5-4b, 

 

 74 10 2000 454.5 1.14mB Tπ −= × × × = . 

 

The width of the toroid is 20.25 10
2

OD ID
m−− = × .  Therefore, the cross-sectional 

area of the toroid is 

 

 2 2 6 2(0.25 10 ) 4.9 10
4mA m
π − −= × = × . 

 

Hence, from Eq. 5-6, assuming that the flux density is uniform throughout the 

cross-section, 
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 6 61.14 4.9 10 5.59 10m Wbφ − −= × × = × .    �  

 

5-4 MAGNETIC STRUCTURES WITH AIR GAPS 

 

In the magnetic structures of electric machines, the flux lines have to cross two air 

gaps.  To study the effect of air gaps, let us consider the simple magnetic structure 

of Fig. 5-5 consisting of an N-turn coil on a magnetic core made up of iron.  The 

objective is to establish a desired magnetic field in the air gap of length g�  by 

controlling the coil current i .  We will assume the magnetic field intensity mH  to 

be uniform along the mean path length m�  in the magnetic core.  The magnetic 

field intensity in the air gap is denoted as gH .  From Ampere’s Law in Eq. 5-1, 

the line integral along the mean path within the core and in the air gap yields the 

following equation: 

 

 m m g gH H Ni+ =� �        (5-10) 

 

Applying Eq. 5-3 to the air gap and Eq. 5-4a to the core, the flux densities 

corresponding to mH  and gH  are 

 

 m m mB Hµ=  and g o gB Hµ=      (5-11) 

 

In terms of the flux densities of Eq. 5-11, Eq. 5-10 can be written as 

 

 gm
m g

m o

BB
Ni

µ µ
+ =� �         (5-12) 

g�

m gφ φ φ= =
i

Figure 5-5 Magnetic structure with air gap. 

W
d
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Since flux lines form closed paths, the flux crossing any perpendicular cross-

sectional area in the core is the same as that crossing the air gap (neglecting the 

leakage flux, which is discussed later on).  Therefore, 

 

 m m g gA B A Bφ = =        (5-13) 

or 

 andm g
m g

B B
A A

φ φ= =       (5-14) 

 

Generally, flux lines bulge slightly around the air gap, as shown in Fig. 5-5.  This 

bulging is called the fringing effect, which can be accounted for by estimating the 

air gap area gA , which is done by increasing each dimension in Fig. 5-5 by the 

length of the air gap: 

 

 ( )( )g g gA W d= + +� �       (5-15) 

 

Substituting flux densities from Eq. 5-14 into Eq. 5-12, 

 

 ( )gm

m m g o

Ni
A A

φ
µ µ

+ =
��

       (5-16) 

 

In Eq. 5-16, we can recognize from Eq. 5-8 that the two terms within the 

parenthesis equal the reluctances of the core and of the air gap, respectively.  

Therefore, the effective reluctance ℜ  of the whole structure in the path of the flux 

lines is the sum of the two reluctances: 

 

 m gℜ = ℜ + ℜ         (5-17) 

 

Substituting from Eq. 5-17 into Eq. 5-16, where Ni  equals the applied mmf F , 

 

 
Fφ =
ℜ

         (5-18) 
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Eq. 5-18 allows φ  to be calculated for the applied ampere-turns (mmf F ).  Then 

mB  and gB  can be calculated from Eq. 5-14.   

 

�  Example 5-3   In the structure of Fig. 5-5, all flux lines in the core are assumed 

to cross the air gap.  The structure dimensions are as follows: core cross-sectional 

area 220mA cm= , mean path length m� = 40 cm, g� = 2 mm, and 75N =  turns.  In 

the linear region, the core permeability can be assumed to be constant, with ��

4500rµ = .  The coil current ( 30 )i A=  is below the saturation level.  Ignore the 

flux fringing effect.  Calculate the flux density in the air gap, (a) including the 

reluctance of the core as well as that of the air gap and (b) ignoring the core 

reluctance in comparison to the reluctance of the air gap. 

 

Solution     From Eq. 5-8, 

 
2

4
7 4

40 10
3.54 10

4 10 4500 20 10
m

m
o r m

A

A Wbµ µ π

−

− −

×ℜ = = = ×
× × × ×

�
. 

and 

 
3

4
7 4

2 10
79.57 10

4 10 20 10
g

g
o g

A

A Wbµ π

−

− −

×ℜ = = = ×
× × ×

�
 

 

 

(a) Including both reluctances, from Eq. 5-16, 

 

 g
m g

Niφ =
ℜ + ℜ

 and 

 
4 4

75 30
1.35

( ) (79.57 3.54) 10 20 10
g

g
g m g g

Ni
B T

A A

φ
−

×= = = =
ℜ + ℜ + × × ×

. 

 

(b) Ignoring the core reluctance, from Eq. 5-16, 

 g
g

Niφ =
ℜ

 and  
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4 4

75 30
1.41

79.57 10 20 10
g

g
g g g

Ni
B T

A A

φ
−

×= = = =
ℜ × × ×

.   �  

 

This example shows that the reluctance of the air gap dominates the flux and the 

flux density calculations; thus we can often ignore the reluctance of the core in 

comparison to that of the air gap. 

 

5-5 INDUCTANCES  
 

At any instant of time in the coil of Fig. 5-6a, the flux linkage of the coil (due to 

flux lines entirely in the core) is related to the current i  by a parameter defined as 

the inductance mL : 

 

 m mL iλ =         (5-19) 

 

where the inductance ( / )m mL iλ=  is constant if the core material is in its linear 

operating region.  The coil inductance in the linear magnetic region can be 

calculated by multiplying all the factors shown in Fig. 5-6b, which are based on 

earlier equations: 

 

 
�

� �
�

2 2

Eq. 5-9Eq. 5-4a Eq. 5-6

Eq. 5-2

( )
m m m

mm m

m m

N N N
L A N

A

µ

µ

 
= = =  ℜ  ��

    (5-20) 

 

Eq. 5-20 indicates that the inductance mL  is strictly a property of the magnetic 

circuit (i.e., the core material, the geometry, and the number of turns), provided 

2

m
m

m m

N
L

Aµ

=
�

mλ
( )N×

mφ
( )mA×( )mµ×

mBmHm

N 
×    �

i

Figure 5-6 Coil Inductance. 
(a) (b) 

mµ

mφ mA
i

N
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that the operation is in the linear range of the magnetic material, where the slope 

of its B-H characteristic can be represented by a constant mµ . 

 

�  Example 5-4   In the rectangular toroid of Fig. 5-7, 5w mm= , 15h mm= , the 

mean path length 18m cm=� , 5000rµ = , and 100N =  turns.  Calculate the coil 

inductance mL , assuming that the core is unsaturated. 

 

Solution     From Eq. 5-8, 

 

4
7 3 3

0.18
38.2 10

5000 4 10 5 10 15 10
m

m
m m

A

A Wbµ π − − −ℜ = = = ×
× × × × × ×

�
. 

 

Therefore, from Eq. 5-20, 

 

 
2

26.18m
m

N
L mH= =

ℜ
.      �  

 
5-5-1 Magnetic Energy Storage in Inductors 

 

Energy in an inductor is stored in its magnetic field.  From the study of electric 

circuits, we know that at anytime, with a current i , the energy stored in the 

inductor is 

 

 21
[ ]

2 mW L i J=        (5-21) 

 

Figure 5-7 Rectangular toroid. 
h

w r
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where [J], for Joules, is a unit of energy.  Initially assuming a structure without an 

air gap, such as in Fig. 5-6a, we can express the energy storage in terms of flux 

density, by substituting into Eq. 5-21 the inductance from Eq. 5-20 and the current 

from the Ampere’s Law in Eq. 5-2: 

 

 
�

2

2 22
2 ( )1 1 1

( / ) [ ]
2 2 2

m m m
m m m m m

m m m volumei

m m m m

H BN
W H N A J

A A
µ

µ µ

= = =�
� �

������ �
  (5-22a) 

 

where m mA volume=� , and in the linear region m m mB Hµ= .  Therefore, from Eq. 

5-22a, the energy density in the core is 

 

 
21

2
m

m
m

B
w

µ
=         (5-22b) 

 

Similarly, the energy density in the air gap depends on oµ  and the flux density in 

it.  Therefore, from Eq. 5-22b, the energy density in any medium can be expressed 

as 

 

 
2

31
[ / ]

2

B
w J m

µ
=        (5-23) 

 

In electric machines, where air gaps are present in the path of the flux lines, the 

energy is primarily stored in the air gaps.  This is illustrated by the following 

example. 

 

�  Example 5-5   In Example 5-3 part (a), calculate the energy stored in the core 

and in the air gap and compare the two. 

 

Solution     In Example 5-3 part (a), 1.35m gB B T= = .  Therefore, from Eq. 5-23, 

 
2

31
161.1 /

2
m

m
m

B
w J m

µ
= =  
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and 
2

6 31
0.725 10 /

2
g

g
o

B
w J m

µ
= = × . 

Therefore, 

 4500g
r

m

w

w
µ= = . 

 

Based on the given cross-sectional areas and lengths, the core volume is 200 times 

larger than that of the air gap.  Therefore, the ratio of the energy storage is 

 

 
( ) 4500

22.5
( ) 200

g g g

m m m

W w volume

W w volume
= × = =     �  

 

5-6 FARADAY’S LAW: INDUCED VOLTAGE IN A COIL DUE TO 
TIME-RATE OF CHANGE OF FLUX LINKAGE 

 

In our discussion so far, we have established in magnetic circuits relationships 

between the electrical quantity i  and the magnetic quantities H , B , φ , and λ .  

These relationships are valid under dc (static) conditions, as well as at any instant 

when these quantities are varying with time.  We will now examine the voltage 

across the coil under time-varying conditions.  In the coil of Fig. 5-8, Faraday’s 

Law dictates that the time-rate of change of flux-linkage equals the voltage across 

the coil at any instant: 

 

 ( ) ( ) ( )
d d

e t t N t
dt dt

λ φ= =       (5-24) 

 

( )i t

( )tφ

( )e t
+

−
N

Figure 5-8 Voltage polarity and direction of flux and current. 
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This assumes that all flux lines link all N-turns such that Nλ φ= .  The polarity of 

the emf ( )e t  and the direction of ( )tφ  in the above equation are yet to be justified. 

 

The above relationship is valid, no matter what is causing the flux to change.  One 

possibility is that a second coil is placed on the same core.  When the second coil 

is supplied by a time-varying current, mutual coupling causes the flux φ  through 

the coil shown in Fig. 5-8 to change with time.  The other possibility is that a 

voltage ( )e t  is applied across the coil in Fig. 5-8, causing the change in flux, 

which can be calculated by integrating both sides of Eq. 5-24 with respect to time: 

 

 
0

1
( ) (0) ( )

t

t e d
N

φ φ τ τ= + ⋅∫       (5-25) 

 

where (0)φ  is the initial flux at 0t =  and τ  is a variable of integration. 

 

Recalling the Ohm’s Law equation v Ri= , the current direction through a resistor 

is defined to be into the terminal chosen to be of the positive polarity.  This is the 

passive sign convention.  Similarly, in the coil of Fig. 5-8, we can establish the 

voltage polarity and the flux direction in order to apply Faraday’s Law, given by 

Eqs. 5-24 and 5-25.  If the flux direction is given, we can establish the voltage 

polarity as follows: first determine the direction of a hypothetical current that will 

produce flux in the same direction as given.  Then, the positive polarity for the 

voltage is at the terminal which this hypothetical current is entering.  Conversely, 

if the voltage polarity is given, imagine a hypothetical current entering the 

positive-polarity terminal.  This current, based on how the coil is wound, for 

example in Fig. 5-8, determines the flux direction for use in Eqs. 5-24 and 5-25.  

Following these rules to determine the voltage polarity and the flux direction is 

easier than applying Lenz’s Law (not discussed here). 

 

�  Example 5-6   In the structure of Fig. 5-8, the flux ˆ( sin )m m tφ φ ω=  linking the 

coil is varying sinusoidally with time, where 300N =  turns, 60f Hz= , and the 

cross-sectional area 210mA cm= .  The peak flux density ˆ 1.5mB T= .  Calculate 
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the expression for the induced voltage with the polarity shown in Fig. 5-8.  Plot 

the flux and the induced voltage as functions of time. 

 

Solution     From Eq. 5-6, 

 
4 3ˆ ˆ 1.5 10 10 1.5 10m m mB A Wbφ − −= = × × = × . 

 

From Faraday’s Law in Eq. 5-24, 

 
3ˆ( ) cos 2 60 300 1.5 10 cos 169.65cosme t N t t t Vω φ ω π ω ω−= = × × × × × = . 

 

The waveforms are plotted in Fig. 5-9.     �  

 

Example 5-6 illustrates that the voltage is induced due to /d dtφ , regardless of 

whether any current flows in that coil.  In the following subsection, we will 

establish the relationship between ( )e t , ( )tφ , and ( )i t . 

 

5-6-1 Relating ( )e t , ( )tφ , and ( )i t  

 

In the coil of Fig. 5-10a, an applied voltage ( )e t  results in ( )tφ , which is dictated 

by the Faraday’s Law equation in the integral form, Eq. 5-25.  But what about the 

current drawn by the coil to establish this flux?  Rather than going back to 

Ampere’s Law, we can express the coil flux linkage in terms of its inductance and 

current using Eq. 5-19: 

 

( ) ( )t Li tλ =         (5-26) 

Figure 5-9 Waveforms of flux and induced voltage.  

( )tφ( )e t

t0
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Assuming that the entire flux links all N turns, the coil flux linkage ( ) ( )t N tλ φ= .  

Substituting this into Eq. 5-26 gives 

 

 ( ) ( )
L

t i t
N

φ =         (5-27) 

 

Substituting for ( )tφ from Eq. 5-27 into Faraday’s Law in Eq. 5-24 results in 

 

 ( )
d di

e t N L
dt dt

φ= =        (5-28) 

 

Eqs. 5-27 and 5-28 relate ( )i t , ( )tφ , and ( )e t ; all of these are plotted in Fig. 5-

10b. 

 

�  Example 5-7   In Example 5-6, the coil inductance is 50 mH .  Calculate the 

expression for the current ( )i t  in Fig. 5-10b. 

 

Solution     From Eq. 5-27, 

 

 3
3

300
( ) ( ) 1.5 10 sin 9.0sin

50 10

N
i t t t t A

L
φ ω ω−

−= = × =
×

.  �  

 
5-7 LEAKAGE AND MAGNETIZING INDUCTANCES 

 

Just as conductors guide currents in electric circuits, magnetic cores guide flux in 

magnetic circuits.  But there is an important difference.  In electric circuits, the 

conductivity of copper is approximately 2010  times higher than that of air, 

 

Figure 5-10 Voltage, current, and flux.  

( )i t

( )tφ

( )e t
+

−
N

(a) (b) 

( ), ( )t i tφ( )e t

t0
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allowing leakage currents to be neglected at dc or at low frequencies such as 60 

Hz.  In magnetic circuits, however, the permeabilities of magnetic materials are 

only around 410  times greater than that of air.  Because of this relatively low 

ratio, the core window in the structure of Fig. 5-11a has "leakage" flux lines, 

which do not reach their intended destination - the air gap.  Note that the coil 

shown in Fig. 5-11a is drawn schematically.  In practice, the coil consists of 

multiple layers and the core is designed to fit as snugly to the coil as possible, 

thus minimizing the unused "window" area. 

 

The leakage effect makes accurate analysis of magnetic circuits more difficult, so 

that it requires sophisticated numerical methods, such as finite element analysis.  

However, we can account for the effect of leakage fluxes by making certain 

approximations.  We can divide the total flux φ  into two parts: the magnetic flux 

mφ , which is completely confined to the core and links all N turns, and the 

leakage flux, which is partially or entirely in air and is represented by an 

"equivalent" leakage flux φ� , which also links all N turns of the coil but does not 

follow the entire magnetic path, as shown in Fig. 5-11b.  Thus,  

 

 mφ φ φ= + �         (5-29) 

 

where φ  is the equivalent flux which links all N turns.  Therefore, the total flux 

linkage of the coil is 

 

(a) (b) 

i

−

+

e

i

−

+
e

mφ

lφ

Figure 5-11 (a) Magnetic and leakage fluxes; (b) equivalent representation of 
magnetic and leakage fluxes. 
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� �

m

m mN N N
λλ

λ φ φ φ λ λ= = + = +
�

� �      (5-30) 

 

The total inductance (called the self-inductance) can be obtained by dividing both 

sides of Eq. 5-30 by the current i : 

 

 
� � �

self m

m

L L L

i i i

λλ λ= +

�

�         (5-31) 

 

Therefore, 

 

 self mL L L= + �         (5-32) 

 

where mL  is often called the magnetizing inductance due to mφ  in the magnetic 

core, and L�  is called the leakage inductance due to the leakage flux φ� .  From 

Eq. 5-32, the total flux linkage of the coil can be written as 

 

 ( )mL L iλ = + �         (5-33) 

 

Hence, from Faraday’s Law in Eq. 5-24, 

 

 
�

( )

( )

m

m

e t

di di
e t L L

dt dt
= +�        (5-34) 

 

This results in the circuit of Fig. 5-12a.  In Fig. 5-12b, the voltage drop due to the 

leakage inductance can be shown separately so that the voltage induced in the coil 

is solely due to the magnetizing flux.  The coil resistance R  can then be added in 

series to complete the representation of the coil. 
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5-7-1 Mutual Inductances 
 

Most magnetic circuits, such as those encountered in electric machines and 

transformers, consist of multiple coils.  In such circuits, the flux established by the 

current in one coil partially links the other coil or coils.  This phenomenon can be 

described mathematically by means of mutual inductances, as examined in circuit 

theory courses.  Mutual inductances are also needed to develop mathematical 

models for dynamic analysis of electric machines.  Since it is not the objective of 

this book, we will not elaborate any further on the topic of mutual inductances.  

Rather, we will use simpler and more intuitive means to accomplish the task at 

hand. 

 

5-8 TRANSFORMERS 

 

Electric machines consist of several mutually-coupled coils where a portion of the 

flux produced by one coil (winding) links other windings.  A transformer consists 

of two or more tightly-coupled windings where almost all of the flux produced by 

one winding links the other windings.  Transformers are essential for transmission 

and distribution of electric power.  They also facilitate the understanding of ac 

motors and generators very effectively. 

 

To understand the operating principles of transformers, consider a single coil, also 

called a winding of 1N  turns, as shown in Fig. 5-13a.  Initially, we will assume 

that the resistance and the leakage inductance of this winding are both zero; the 

( )v t
+

−

R

mφ

lL ( )i t

( )me t( )e t
+

−

+

−

l
di

L
dt

( )me t( )e t

+

−

+

−

+ −
( )i t

mL

lL

Figure 5-12 (a) Circuit representation;  
(b) leakage inductance separated from the core. 

(a) (b) 
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second assumption implies that all of the flux produced by this winding is 

confined to the core.  Applying a time-varying voltage 1e  to this winding results 

in a flux ( )m tφ .  From Faraday’s Law:  

 

 1 1( ) md
e t N

dt

φ=        (5-35) 

 

where ( )m tφ is completely dictated by the time-integral of the applied voltage, as 

given below (where it is assumed that the flux in the winding is initially zero): 

 

 1
1 0

1
( ) ( )

t

m t e d
N

φ τ τ= ⋅∫        (5-36) 

 

The current ( )mi t  drawn to establish this flux depends on the magnetizing 

inductance mL of this winding, as depicted in Fig. 5-13b. 

 

A second winding of 2N turns is now placed on the core, as shown in Fig. 5-14a.  

A voltage is induced in the second winding due to the flux ( )m tφ linking it.  From 

Faraday’s Law,  

 

 2 2( ) md
e t N

dt

φ=        (5-37) 

 

Eqs. 5-35 and 5-37 show that in each winding, the volts-per-turn are the same, 

due to the same /md dtφ : 

+

−
1e

1N

mφ
mi+

−

1e mL

Figure 5-13 Magnetizing inductance of a single coil. 
(a) (b) 
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1 2

1 2

( ) ( )e t e t

N N
=         (5-38) 

 

We can represent the relationship of Eq. 5-38 in Fig. 5-14b by means of a 

hypothetical circuit component called the “ideal transformer,” which relates the 

voltages in the two windings by the turns-ratio 1 2/N N : 

 

 1 1

2 2

( )

( )

e t N

e t N
=         (5-39) 

 

The dots in Fig. 5-14b convey the information that the winding voltages will be of 

the same polarity at the dotted terminals with respect to their undotted terminals.  

For example, if mφ  is increasing with time, the voltages at both dotted terminals 

will be positive with respect to the corresponding undotted terminals.  The 

advantage of using this dot convention is that the winding orientations on the core 

need not be shown in detail. 

 

A load such an R-L combination is now connected across the secondary winding, 

as shown in Fig. 5-15a.  A current 2 ( )i t  will now flow through the R-L 

combination.  The resulting ampere-turns 2 2N i  will tend to change the core flux 

mφ  but cannot because ( )m tφ is completely dictated by the applied voltage 1( )e t , 

as given in Eq. 5-36.  Therefore, additional current 2i′  in Fig. 5-15b is drawn by 

winding 1 in order to compensate (or nullify) 2 2N i , such that 

 

+

−

mi+

−

1e mL

 
�������

Ideal
Transformer

1N 2N

2e

+

−
1e

1N

mφ

2e

2N

−
+

Figure 5-14 (a) Core with two coils; (b)  equivalent circuit. 
(a) (b) 
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 1 2 2 2N i N i′ =         (5-40) 

or 

 2 2

2 1

( )

( )

i t N

i t N

′
=         (5-41) 

 

This is the second property of the “ideal transformer.”  Thus, the total current 

drawn from the terminals of winding 1 is 

 

 1 2( ) ( ) ( )mi t i t i t′= +        (5-42) 

 

In Fig. 5-15, the resistance and the leakage inductance associated with winding 2 

appear in series with the R-L load.  Therefore, the induced voltage 2e  differs from 

the voltage 2v  at the winding terminals by the voltage drop across the winding 

resistance and the leakage inductance, as depicted in Fig. 5-16.  Similarly, the 

applied voltage 1v  differs from the emf 1e  (induced by the time-rate of change of 

the flux mφ ) by the voltage drop across the resistance and the leakage inductance 

of winding 1.   

 

5-8-1 Core Losses 
 

We can model core losses due to hysteresis and eddy currents by connecting a 

resistance heR  in parallel with mL , as shown in Fig. 5-16.  The loss due to the 

hysteresis-loop in the B-H characteristic was discussed earlier.  Another source of 

core loss is due to eddy currents.  All magnetic materials have a finite electrical 

+

−
1e

1N

mφ

2e

2N

−
+

( )1i t

( )2i t

( )2i t′( )1i t

+

−

mi+

−

1e mL

 
�������

Ideal
Transformer

1N 2N

2e

( )2i t

(a) (b) 

Figure 5-15 Transformer with impedance on the secondary; (b) equivalent circuit. 
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resistivity (ideally, it should be infinite).  As discussed in section 5-6, which dealt 

with Faraday's voltage induction law, time-varying fluxes induce voltages in the 

core, which result in circulating (eddy) currents within the core to oppose these 

flux changes (and partially neutralize them).   

 

 

In Fig. 5-17a, an increasing flux φ  will set up many current loops (due to induced 

voltages that oppose the change in core flux), which result in losses.  The primary 

means of limiting the eddy-current losses is to make the core out of steel 

laminations which are insulated from each other by means of thin layers of 

varnish, as shown in Fig. 5-17b.  A few laminations are shown to illustrate how 

insulated laminations reduce eddy-current losses.  Because of the insulation 

between laminations, the current is forced to flow in much smaller loops within 

each lamination.  Laminating the core reduces the flux and the induced voltage 

more than it reduces the effective resistance to the currents within a lamination, 

thus reducing the overall losses.  For 50- or 60-Hz operation, lamination 

thicknesses are typically 0.2 to 1 mm. 

 

Figure 5-16 Equivalent circuit of a real transformer. 

( )2i t′( )1i t

+

−

mi+

−

1e mL

 
�������
Ideal Transformer
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2v

+

−

1v

+

−

Real Transformer

heR

mφ

circulating
currents

i

mφ

circulating
currents

(a) (b) 
Figure 5-17 (a) Eddy currents induced by time varying fluxes; (b) core with  
insulated laminations. 
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5-8-2 Real versus Ideal Transformer Models 
 

Consider the equivalent circuit of a real transformer, shown in Fig. 5-16.  If we 

ignore all of the parasitics, such as the leakage inductances and the losses, and if 

we assume that the core permeability is infinite (thus mL = ∞ ), then the equivalent 

circuit of the real transformer reduces to exactly that of the ideal transformer. 

 

5-8-3 Determining Transformer Model Parameters 

 

In order to utilize the transformer equivalent circuit of Fig. 5-16, we need to 

determine the values of its various parameters.  We can obtain these by means of 

two tests: 1) an open-circuit test and 2) a short-circuit test. 

 

5-8-3-1  Open-Circuit Test 
 

In this test, one of the windings, for example winding 2, is kept open as shown in 

Fig. 5-18, while winding 1 is applied its rated voltage.  The rms input voltage ocV , 

the rms current ocI  and the average power ocP  are measured, where the subscript 

"oc" refers to the open-circuit condition.  Under the open-circuit condition, the 

winding current is very small and is determined by the large magnetizing 

impedance.  Therefore, the voltage drop across the leakage impedance can be 

neglected, as shown in Fig. 5-18.  In terms of the measured quantities, heR can be 

calculated as follows: 

 

 
2

oc
he

oc

V
R

P
=         (5-43) 

 

The magnitude of the open-circuit impedance in Fig. 5-18 can be calculated as 

 

 
2 2

m he oc
oc

oche m

X R V
Z

IR X
= =

+
      (5-44) 
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Using the measured values ocV , ocI , and heR  calculated from Eq. 5-43, we can 

calculate the magnetizing reactance mX  from Eq. 5-44. 

 

5-8-3-2  Short-Circuit Test 
 

In this test, one of the windings, for example winding 1, is short-circuited, as 

shown in Fig. 5-19a.  A small voltage is then applied to winding 2 and adjusted so 

that the current in each winding is approximately equal to its rated value.  Under 

this short-circuited condition, the magnetizing reactance mX  and the core-loss 

resistance heR  can be neglected in comparison to the leakage impedance of 

winding 1, as shown in Fig. 5-19a.  In this circuit, the rms voltage scV , the rms 

current scI , and the average power scP  are measured, where the subscript "sc" 

represents the short-circuited condition. 

 

 

In terms of voltages, currents, and the turns-ratio defined in Fig. 5-19a, 

 

 2 2

1 1

E N

E N
=  and  1

1 2

scI N

I N
=      (5-45) 

 

Therefore, 

 

Figure 5-18 Open-circuit test. 

ocI

heRmjX

ocV

+

−



 5-27 

2
1

2 1

1
1

2

2

2 1

1 1

sc

N
E

E N
NI I
N

N E

N I

=

 
=  

 

       (5-46) 

 

Notice that in Eq. 5-46, from Fig. 5-19a 
 

 1
1 1

1

E
R jX

I
= + �         (5-47) 

 

Therefore, substituting Eq. 5-47 into Eq. 5-46, 
 

 
2

2 2
1 1

1

( )
sc

E N
R jX

I N

 
= + 

 
�       (5-48) 

 

This allows the equivalent circuit under short-circuited condition in Fig. 5-19a to 

be drawn as in Fig. 5-19b, where the parasitic components of coil 1 have been 

(b) 

Figure 5-19  Short-circuit test. 
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moved to coil 2’s side and included with coil 2’s parasitic components.  Having 

transferred the winding 1 leakage impedance to the side of winding 2, we can 

effectively replace the ideal transformer portion of Fig. 5-19b with a short.  Thus, 

in terms of the measured quantities, 
 

 
2

2
2 1 2

1

sc

sc

PN
R R

N I

 
+ = 

 
       (5-49) 

 

Transformers are designed to produce approximately equal 2I R  losses (copper 

losses) in each winding.  This implies that the resistance of a winding is inversely 

proportional to the square of its rated current.  In a transformer, the rated currents 

are related to the turns-ratio as 
 

 1, 2

2, 1

rated

rated

I N

I N
=         (5-50) 

 

where the turns-ratio is either explicitly mentioned on the name-plate of the 

transformer or it can be calculated from the ratio of the rated voltages.  Therefore, 
 

 

 

2 2

2,1 1

2 1, 2

rated

rated

IR N

R I N

   
= =       

 

or 

 
2

2
1 2

1

N
R R

N

 
= 

 
       (5-51) 

 

Substituting Eq. 5-51 into Eq. 5-49, 

 

 2 2

1

2
sc

sc

P
R

I
=         (5-52) 

 

and 1R  can be calculated from Eq. 5-51. 

 

The leakage reactance in a winding is approximately proportional to the square of 

its number of turns.  Therefore, 
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2

1 1

2 2

X N

X N

 
=  

 
�

�

 or 
2

2
1 2

1

N
X X

N

 
= 

 
� �    (5-53) 

 

Using Eqs. 5-51 and 5-53 in Fig. 5-19b, 

 

 ( ) ( )2 2

2 22 2 sc
sc

sc

V
Z R X

I
= + =�      (5-54) 

 

Using the measured values scV  and scI , and 2R  calculated from Eq. 5-52, we can 

calculate 2X �  from Eq. 5-54 and 1X �  from Eq. 5-53. 

 
5-9 PERMANENT MAGNETS 
 

Many electric machines other than induction motors consist of permanent 

magnets in smaller ratings.  However, the use of permanent magnets will 

undoubtedly extend to machines of higher power ratings, because permanent 

magnets provide a “free” source of flux, which otherwise has to be created by 

current-carrying windings that incur 2i R  losses in winding resistance.  The higher 

efficiency and the higher power density offered by permanent-magnet machines 

are very attractive. In recent years, significant advances have been made in Nd-

Fe-B material, which has a very attractive magnetic characteristic, shown in 

comparison to other permanent-magnet materials in Fig. 5-20.  Nd-Fe-B magnets 

offer high flux density operation, high energy densities, and a high ability to resist 

demagnetization.  Decrease in their manufacturing cost, coupled with advances in 

operation at high temperatures, will allow their application at much higher power 

ratings than at present. 

 

In the subsequent chapters, as we discuss permanent-magnet machines, it is 

adequate for us to treat them as a source of flux, which otherwise would have to 

be established by current-carrying windings. 
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SUMMARY/REVIEW QUESTIONS 
 

1. What is the role of magnetic circuits?  Why are magnetic materials with very 

high permeabilities desirable?  What is the permeability of air?  What is the 

typical range of the relative permeabilities of ferromagnetic materials like 

iron? 

2. Why can “leakage” be ignored in electric circuits but not in magnetic circuits? 

3. What is Ampere’s Law and what quantity is usually calculated by using it? 

4. What is the definition of the mmf F? 

5. What is meant by “magnetic saturation”? 

6. What is the relationship between φ  and B? 

7. How can magnetic reluctance ℜ  be calculated?  What field quantity is 

calculated by dividing the mmf F by the reluctance ℜ ? 

8. In magnetic circuits with an air gap, what usually dominates the total 

reluctance in the flux path: the air gap or the rest of the magnetic structure? 

9. What is the meaning of the flux linkage λ  of a coil? 

10. Which law allows us to calculate the induced emf?  What is the relationship 

between the induced voltage and the flux linkage? 

11. How is the polarity of the induced emf established? 

B Tm ( )

− ( )H kA mm /

0 4.

−0 6.

−0 8.

−1 0.

−1 2.

−1 4.

|
200

|
500

|
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|
1000

Sm Co

Alnico

Ferrite

Nd-Fe-B

Figure 5-20 Characteristics of various permanent magnet materials. 
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12. Assuming sinusoidal variations with time at a frequency f, how are the rms 

value of the induced emf, the peak of the flux linking a coil, and the frequency 

of variation f related? 

13. How does the inductance L of a coil relate Faraday’s Law to Ampere’s Law? 

14. In a linear magnetic structure, define the inductance of a coil in terms of its 

geometry. 

15. What is leakage inductance?  How can the voltage drop across it be 

represented separate from the emf induced by the main flux in the magnetic 

core? 

16. In linear magnetic structures, how is energy storage defined?  In magnetic 

structures with air gaps, where is energy mainly stored? 

17. What is the meaning of “mutual inductance”? 

18. What is the role of transformers?  How is an ideal transformer defined?  What 

parasitic elements must be included in the model of an ideal transformer for it 

to represent a real transformer? 

19. What are the advantages of using permanent magnets? 
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PROBLEMS 
 

5-1 In Example 5-1, calculate the field intensity within the core: a) very close 

to the inside diameter and b) very close to the outside diameter.  c) 

Compare the results with the field intensity along the mean path. 

5-2 In Example 5-1, calculate the reluctance in the path of flux lines if 

2000rµ = . 

5-3 Consider the core of dimensions given in Example 5-1.  The coil requires 

an inductance of 25 Hµ .  The maximum current is 3 A and the maximum 

flux density is not to exceed 1.3T .  Calculate the number of turns N and 

the relative permeability rµ  of the magnetic material that should be used. 
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5-4 In Problem 5-3, assume the permeability of the magnetic material to be 

infinite.  To satisfy the conditions of maximum flux density and the 

desired inductance, a small air gap is introduced.  Calculate the length of 

this air gap (neglecting the effect of flux fringing) and the number of turns 

N. 

5-5 In Example 5-4, calculate the maximum current beyond which the flux 

density in the core will exceed 0.3 T. 

5-6 The rectangular toroid of Fig. 5-7 in Example 5-4 consists of a material 

whose relative permeability can be assumed to be infinite.  The other 

parameters are as given in Example 5-4.  An air gap of 0.05 mm length is 

introduced.  Calculate (a) the coil inductance mL  assuming that the core is 

unsaturated and (b) the maximum current beyond which the flux density in 

the core will exceed 0.3 T. 

5-7 In Problem 5-6, calculate the energy stored in the core and in the air gap at 

the flux density of 0.3 T. 

5-8 In the structure of Fig. 5-11a, mL  = 200 mH, lL = 1 mH, and N=100 turns.  

Ignore the coil resistance.  A steady state voltage is applied, where 

2 120 0V V= × ∠  at a frequency of 60 Hz.  Calculate the current I  and 

i(t). 

5-9 A transformer is designed to step down the applied voltage of 120 V (rms) 

to 24 V (rms) at 60 Hz.  Calculate the maximum rms voltage that can be 

applied to the high-side of this transformer without exceeding the rated 

flux density in the core if this transformer is used in a power system with a 

frequency of 50 Hz. 

5-10 Assume the transformer in Fig. 5-15a to be ideal.  Winding 1 is applied a 

sinusoidal voltage in steady state with 1 2 120 0oV V= × ∠  at a frequency 

f=60 Hz.  1 2/ 3N N = .  The load on winding 2 is a series combination of R 

and L with ( )5 3LZ j= + Ω .  Calculate the current drawn from the voltage 

source. 

5-11 Consider the transformer shown in Fig. 5-15a, neglecting the winding 

resistances, leakage inductances, and the core loss.  1 2/ 3N N = .  For a 

voltage of 120 V (rms) at a frequency of 60 Hz applied to winding 1, the 
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magnetizing current is 1.0 A (rms).  If a load of 1.1 Ω  at a power factor of 

0.866 (lagging) is connected to the secondary winding, calculate 1I . 

5-12 In Problem 5-11, the core of the transformer now consists of a material 

with a rµ  that is one-half of that in Problem 5-11.  Under the operating 

conditions listed in Problem 5-11, what are the core flux density and the 

magnetizing current?  Compare these values to those in Problem 5-11.  

Calculate 1I . 

5-13 A 2400 / 240 V, 60-Hz transformer has the following parameters in the 

equivalent circuit of Fig. 5-16: the high-side leakage impedance is (1.2 + j 

2.0) Ω , the low-side leakage impedance is (0.012 + j 0.02) Ω , and Xm at 

the high-side is 1800 Ω .  Neglect Rhe.  Calculate the input voltage if the 

output voltage is 240 V (rms) and supplying a load of 1.5 Ω  at a power 

factor of 0.9 (lagging). 

5-14 Calculate the equivalent-circuit parameters of a transformer, if the 

following open-circuit and short-circuit test data is given for a 60-Hz, 50-

kVA, 2400:240 V distribution transformer: 

 open-circuit test with high-side open: 

Voc = 240 V, Ioc = 5.0 A, Poc= 400 W, 

short-circuit test with low-side shorted: 

Vsc = 90 V, Isc = 20 A, Psc = 700W. 
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CHAPTER  6 
 

BASIC PRINCIPLES OF 
ELECTROMECHANICAL 
ENERGY CONVERSION 
 
 

6-1 INTRODUCTION 

 

Electric machines, as motors, convert electrical power input into mechanical 

output, as shown in Fig. 6-1.  These machines may be operated solely as 

generators, but they also enter the generating mode when slowing down (during 

regenerative braking) where the power flow is reversed.  In this chapter, we will 

briefly look at the basic structure of electric machines and the fundamental 

principles of the electromagnetic interactions that govern their operation.  We will 

limit our discussion to rotating machines, although the same principles apply to 

linear machines. 

 

6-2 BASIC STRUCTURE 

 

We often describe electric machines by viewing a cross-section, as if the machine 

is "cut" by a plane perpendicular to the shaft axis and viewed from one side, as 

shown in Fig. 6-2a.  Because of symmetry, this cross-section can be taken 

anywhere along the shaft axis.  The simplified cross-section in Fig. 6-2b shows 

elecP

elecP

mechP

mechPGenerating mode

Motoring mode

Mechanical

System

Electrical Electrical

MachineSystem

Figure 6-1 Electric machine as an energy converter. 
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that all machines have a stationary part, called the stator, and a rotating part, 

called the rotor, separated by an air gap, thereby allowing the rotor to rotate freely 

on a shaft, supported by bearings.  The stator is firmly affixed to a foundation to 

prevent it from turning. 

 

In order to require small ampere-turns to create flux lines shown crossing the air 

gap in Fig. 6-3a, both the rotor and the stator are made up of high permeability 

ferromagnetic materials and the length of the air gap is kept as small as possible.  

In machines with ratings under 10 kW in ratings, a typical length of the air gap is 

about 1 mm, which is shown highly exaggerated for ease of drawing.   

 

The stator-produced flux distribution in Fig. 6-3a is shown for a 2-pole machine 

where the field distribution corresponds to a combination of a single north pole 

and a single south pole.  Often there are more than 2 poles, for example 4 or 6.  

The flux-distribution in a 4-pole machine is represented in Fig. 6-3b.  Due to 

complete symmetry around the periphery of the airgap, it is sufficient to consider 

only one pole pair consisting of adjacent north and south poles.  Other pole pairs 

have identical conditions of magnetic fields and currents. 

 

(a) (b) (c) 
Figure 6-3 Structure of machines. 
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(a) (b) 
Figure 6-2 Motor construction (a) “cut” perpendicular to the shaft axis; (b) cross-
section seen from one side. 
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If the rotor and the stator are perfectly round, the air gap is uniform and the 

magnetic reluctance in the path of flux lines crossing the air gap is uniform.  

Machines with such structures are called non-salient pole machines.  Sometimes, 

the machines are purposely designed to have saliency so that the magnetic 

reluctance is unequal along various paths, as shown in Fig. 6-3c.  Such saliency 

results in what is called the reluctance torque, which may be the primary or a 

significant means of producing the torque.   

 

We should note that to reduce eddy-current losses, the stator and the rotor often 

consist of laminations of silicon steel, which are insulated from each other by a 

layer of thin varnish.  These laminations are stacked together, perpendicular to the 

shaft axis.  Conductors which run parallel to the shaft axis may be placed in slots 

cut into these laminations to place.  Readers are urged to purchase a used dc 

motor and an induction motor and then take them apart to look at their 

construction. 

 

6-3 PRODUCTION OF MAGNETIC FIELD 

 

We will now examine how coils produce magnetic fields in electric machines.  

For illustration, a concentrated coil of Ns turns is placed in two stator slots 0180  

(called full-pitch) apart, as shown in Fig. 6-4a.  The rotor is present without its 

electrical circuit.  We will consider only the magnetizing flux lines that 

completely cross the two air gaps, and at present ignore the leakage flux lines.  

The flux lines in the air gap are radial, that is, in a direction which goes through 

magnetic
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Figure 6-4 Production of magnetic field. 
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the center of the machine.  Associated with the radial flux lines, the field intensity 

in the air gap is also in a radial direction; it is assumed it to be positive (+Hs) if it 

is away from the center of the machine, otherwise negative (-Hs).  The subscript 

"s" (for stator) refers to the field intensity in the air gap due to the stator.  We will 

assume the permeability of iron to be infinite, hence the H-fields in the stator and 

the rotor are zero.  Applying Ampere’s Law along any of the closed paths shown 

in Fig. 6-4a, at any instant of time t, 

 

 
�

outward inward

( )s g s g s sH H N i− − =� �
�����

 or 
2

s s
s

g

N i
H =

�
   (6-1) 

 

where a negative sign is associated with the integral in the inward direction, 

because while the path of integration is inward, the field intensity is measured 

outward.  The total mmf acting along any path shown in Fig. 6-4a is s sN i .  

Having assumed the permeability of the stator and the rotor iron to be infinite, by 

symmetry, half of the total ampere-turns (
2
s sN i

) are "consumed” or “acting" in 

making the flux lines cross each air gap length.  Hence, the mmf sF  acting on 

each air gap is 

 

 
2
s s

s

N i
F =         (6-2) 

 

Substituting for 
2
s sN i

 from Eq. 6-2 into Eq. 6-1, 

 

 s s gF H= �         (6-3) 

 

Associated with sH  in the air gap is the flux density sB , which using Eq. 6-1 can 

be written as 

 

 
2

s s
s o s o

g

N i
B Hµ µ= =

�
       (6-4) 
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All field quantities ( sH , sF , and sB ) directed away from the center of the 

machine are considered positive.  Figure 6-4b shows the "developed" view, as if 

the circular cross-section in Fig. 6-4a were flat.  Note that the field distribution is 

a square wave.  From Eqs. 6-1, 6-2, and 6-4, it is clear that all three stator-

produced field quantities ( sH , sF , and sB ) are proportional to the instantaneous 

value of the stator current ( )si t  and are related to each other by constants.  

Therefore, in Fig. 6-4b, the square wave plot of sB  distribution at an instant of 

time also represents sH  and sB  distributions at that time, plotted on different 

scales. 

 

In the structure of Fig. 6-4a, the axis through 00θ =  is referred to as the magnetic 

axis of the coil or winding that is producing this field.  The magnetic axis of a 

winding goes through the center of the machine in the direction of the flux lines 

produced by a positive value of the winding current and is perpendicular to the 

plane in which the winding is located. 

 

�  Example 6-1   In Fig 6-4a, consider a concentrated coil with 25sN =  turns, 

and air gap length g� =1 mm.  The mean radius (at the middle of the air gap) is 

r =15 cm, and the length of the rotor is � =35 cm. At an instant of time t , the 

current 20si A= .  (a) Calculate the sH , sF , and sB distributions in the air gap as 

a function of θ , and (b) calculate the total flux crossing the air gap. 

 

Solution 

(a) Using Eq. 6-2, 
 

250
2
s s

s

N i
F A turns= = ⋅ .  

 

From Eq. 6-1, 
 

52.5 10 /
2

s s
s

g

N i
H A m= = ×

�
. 
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Finally, using Eq. 6-4,  
 

0.314s o sB H Tµ= = .   

 

Plots of the field distributions are similar to those shown in Fig. 6-4b. 

 

(b)  The flux crossing the rotor is s B dAφ = ⋅∫ , calculated over half of the curved 

cylindrical surface A.  The flux density is uniform and the area A  is one-half of 

the circumference times the rotor length: 21
(2 ) 0.165

2
A r mπ= =� .  Therefore, 

0.0518s sB A Wbφ = ⋅ = .       �  

 

Note that the length of the air gap in electrical machines is extremely small, 

typically one to two mm.  Therefore, we will use the radius r  at the middle of the 

air gap to also represent the radius to the conductors located in the rotor and the 

stator slots. 

 

6-4 BASIC PRINCIPLES OF OPERATION 

 

There are two basic principles that govern electric machines’ operation to convert 

between electric energy and mechanical work: 

 

 1) A force is produced on a current-carrying conductor when it is 

subjected to an externally-established magnetic field. 

 2) An emf is induced in a conductor moving in a magnetic field.  

 

6-4-1 Electromagnetic Force 

 

Consider the conductor of length �  shown in Fig. 6-5a.  The conductor is carrying 

a current i and is subjected to an externally-established magnetic field of a 

uniform flux-density B perpendicular to the conductor length.  A force emf  is 

exerted on the conductor due to the electromagnetic interaction between the 

external magnetic field and the conductor current.  The magnitude of this force is 

given as 
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�

� � �

[ ] [ ][ ][ ]

em
T mANm

f B i= �         (6-5) 

 

As shown in Fig. 6-5a, the direction of the force is perpendicular to the directions 

of both i and B.  To obtain the direction of this force, we will superimpose the 

flux lines produced by the conductor current, which are shown in Fig. 6-5b.  The 

flux lines add up on the right side of the conductor and subtract on the left side, as 

shown in Fig. 6-5c.  Therefore, the force emf  acts from the higher concentration 

of flux lines to the lower concentration, that is, from right to left in this case. 

 

�  Example 6-2   In Fig. 6-6a, the conductor is carrying a current into the paper 

plane in the presence of an external, uniform field.  Determine the direction of the 

electromagnetic force. 

 

Solution     The flux lines are clockwise and add up on the upper-right side, hence 

the resulting force shown in Fig. 6-6b. �  

(a) (b) 
add

               �����
subtract

               �����

external  fieldB

emf

resultant

emf

(c) 

Figure 6-5 Electric force on a current-carrying conductor in a magnetic field. 

i

�

emf

B

(a) (b) 

external B

Figure 6-6 Figure for Example 6-2. 

emf

external B

B
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6-4-2 Induced EMF 

 

In Fig. 6-7a, a conductor of length �  is moving to the right at a speed u. The B-

field is uniform and is perpendicularly directed into the paper plane. The 

magnitude of the induced emf at any instant of time is then given by 

 

 
� � � �

[ ][ ] [ ] [ / ]TV m m s

e B l u=         (6-6) 

 

The polarity of the induced emf can be established as follows:  due to the 

conductor motion, the force on a charge q  (positive, or negative in the case of an 

electron) within the conductor can be written as  

 

 ( )qf q= ×u B          (6-7) 

 

where the speed and the flux density are shown by bold letters to imply that these 

are vectors and their cross product determines the force.  Since u and B  are 

orthogonal to each other, as shown in Fig. 6-7b, the force on a positive charge is 

upward.  Similarly, the force on an electron will be downwards.  Thus, the upper 

end will have a positive potential with respect to the lower end. This induced emf 

across the conductor is independent of the current that would flow if a closed path 

were to be available (as would normally be the case).  With the current flowing, 

the voltage across the conductor will be the induced-emf ( )e t  in Eq. 6-6 minus 

the voltage drops across the conductor resistance and inductance. 

 

Figure 6-7 Conductor moving in a magnetic field. 

qf +

u

(into paper)B

(b) (a) 

qf −

qf +

u

(into paper)B

−

+

�
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�  Example 6-3   In Figs. 6-8a and 6-8b, the conductors perpendicular to the 

paper plane are moving in the directions shown, in the presence of an external, 

uniform B-field.  Determine the polarity of the induced emf. 

 

Solution     The vectors representing u and B  are shown.  In accordance with Eq. 

6-7, the top side of the conductor in Fig. 6-8a is positive.  The opposite is true in 

Fig. 6-8b.     �  

 

6-4-3 Magnetic Shielding of Conductors in Slots 
 

The current-carrying conductors in the stator and the rotor are often placed in 

slots, which shield the conductors magnetically.  As a consequence, the force is 

mainly exerted on the iron around the conductor.  It can be shown, although we 

will not prove it here, that this force has the same magnitude and direction as it 

would in the absence of the magnetic shielding by the slot.  Since our aim in this 

course is not to design but rather to utilize electric machines, we will completely 

ignore the effect of the magnetic shielding of conductors by slots in our 

subsequent discussions.  The same argument applies to the calculation of induced 

emf and its direction using Eqs. 6-6 and 6-7. 

 

6-5 APPLICATION OF THE BASIC PRINCIPLES 
 

Consider the structure of Fig. 6-9a, where we will assume that the stator has 

established a uniform field sB  in the radial direction through the air gap.  An Nr-

turn coil is located on the rotor at a radius r .  We will consider the force and the 

torque acting on the rotor in the counter-clockwise direction to be positive.   

u

u

B

B

u u

B

B

(a) (b) 
Figure 6-8 Example 6-3. 
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A current ri  is passed through the rotor coil, which is subjected to a stator-

established field sB  in Fig. 6-9a.  The coil inductance is assumed to be negligible.  

The current magnitude I is constant but its direction (details are discussed in 

Chapter 7) is controlled such that it depends on the location δ  of the coil, as 

plotted in Fig. 6-9b.  In accordance with Eq. 6-5, the force on both sides of the 

coil results in an electromagnetic torque on the rotor in a counter-clockwise 

direction, where 

 

 ( )em s rf B N I= �        (6-8) 

Thus, 

 ( )2 2em em s rT f r B N I r= = �       (6-9) 

 

As the rotor turns, the current direction is changed every half-cycle, resulting in a 

torque that remains constant, as given by Eq. 6-9.  This torque will accelerate the 

mechanical load connected to the rotor shaft, resulting in a speed mω .  Note that 

an equal but opposite torque is experienced by the stator.  This is precisely the 

reason for affixing the stator to the foundation - to prevent the stator from turning.   

 

Due to the conductors moving in the presence of the stator field, in accordance 

with Eq. 6-6, the magnitude of the induced emf at any instant of time in each 

conductor of the coil is 

 

system
Electrical

+

−
re

emTmω

δ

ri stator
magnetic 
axis

re

ri

I

I−

E

E−

0

0

0

emT

δ

δ

δ

o180 o360

Figure 6-9 Motoring mode. 
(a) (b) 



 6-11 

 
�

cond s m

u

E B rω= �        (6-10) 

 

Thus, the magnitude of the induced emf in the rotor coil with 2 rN  conductors is 

 

 2 r s mE N B rω= �        (6-11) 

 

The waveform of the emf re , with the polarity indicated in Fig. 6-9a, is similar to 

that of ri , as plotted in Fig. 6-9b.  

 

6-6 ENERGY CONVERSION 
 
In this idealized system which has no losses, we can show that the electrical input 

power elP  is converted into the mechanical output power mechP .  Using the 

waveforms of ri , re , and emT  in Fig. 6-9b at any instant of time, 

 

 (2 )el r r r s mP e i N B r Iω= = �        (6-12) 

and 

 (2 )mech em m s r mP T B N I rω ω= = �      (6-13) 

Thus, 

 mech elP P=         (6-14) 

 

The above relationship is valid in the presence of losses.  The power drawn from 

the electrical source is elP , in Eq. 6-12, plus the losses in the electrical system.  

The mechanical power available at the shaft is mechP , in Eq. 6-13, minus the losses 

in the mechanical system.  These losses are briefly discussed in section 6-7. 

 

�  Example 6-4   The machine shown in Fig. 6-9a has a radius of 15 cm and the 

length of the rotor is 35 cm.  The rotor coil has 15rN =  turns, and 1.3sB T=  

(uniform).  The current ri , as plotted in Fig. 6-9b, has a magnitude I = 10 A.  

100 /m rad sω = .  Calculate and plot emT  and the induced emf re .  Also, calculate 

the power being converted. 
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Solution     Using Eq. 6-9, the electromagnetic torque on the rotor will be in a 

counter-clockwise direction and of a magnitude 

 

2 ( ) 2 1.3 15 10 0.35 0.15 20.5em s rT B N I r Nm= = × × × × × =�  

 

The electromagnetic torque will have the waveform shown in Fig. 6-9b.  At a 

speed of 100 /m rad sω = , the electrical power absorbed for conversion into 

mechanical power is 
 

 100 20.5 2m emP T kWω= = × �      �  
 

6-6-1 Regenerative Braking 
 

At a speed mω , the rotor inertia, including that of the connected mechanical load, 

has stored kinetic energy.  This energy can be recovered and fed back into the 

electrical system shown in Fig. 6-10a.  In so doing, the current is so controlled as 

to have the waveform plotted in Fig. 6-10b, as a function of the angle δ .  Notice 

that the waveform of the induced voltage remains unchanged.  In this regenerative 

case, due to the reversal of the current direction (compared to that in the motoring 

mode), the torque emT  is in the clockwise direction (opposing the rotation), and 

shown to be negative in Fig. 6-10b.  Now the input power mechP  from the 

mechanical side equals the output power elP  into the electrical system.  This 

direction of power flow represents the generator mode of operation. 

Figure 6-10 Regenerative braking mode. 
(a) (b) 
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6-7 POWER LOSSES AND ENERGY EFFICIENCY  
 

As indicated in Fig. 6-11, any electric drive has inherent power losses, which are 

converted into heat.  These losses, which are complex functions of the speed and 

the torque of the machine, are discussed in Chapter 15.  If the output power of the 

drive is oP , then the input power to the motor in Fig. 6-11 is  

 

 , ,in motor o loss motorP P P= +        (6-15) 

 

At any operating condition, let ,loss motorP  equal all of the losses in the motor.  Then 

the energy efficiency of the motor is  

 

 
, ,

o o
motor

in motor o loss motor

P P

P P P
η = =

+
     (6-16) 

 

In the power-processing unit of an electric drive, power losses occur due to 

current conduction and switching within the power semiconductor devices. 

Similar to Eq. 6-16, we can define the energy efficiency of the PPU as PPUη .  

Therefore, the overall efficiency of the drive is such that 

 

 drive motor PPUη η η= ×        (6-17) 

 

Energy efficiencies of drives depend on many factors which we will discuss in 

Chapter 15.  The energy efficiency of small to medium sized electric motors 

ranges from 85 to 93 percent, while that of power-processing units ranges from 93 

to 97 percent.  Thus, from Eq. 6-17, the overall energy efficiency of drives is in 

Electric Drive����������	

PPU losses Motor losses

Electrical

machine

P

P

U

oPinP

Figure 6-11 Power losses and energy efficiency. 
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the approximate range of 80 to 90 percent. 

 

6-8 MACHINE RATINGS 

 

Machine ratings specify the limits of speed and torque at which a machine can 

operate. Usually they are specified for the continuous duty operation.  These 

limits may be higher for intermittent duty and for dynamic operation during brief 

periods of accelerations and decelerations.  Power loss in a machine raises its 

temperature above the temperature of its surroundings, which is often referred to 

as the ambient temperature. The ambient temperature is usually taken to be 40 C° .  

Machines are classified based on the temperature rise that they can tolerate. The 

temperature should not exceed the limit specified by the machine class.  As a rule 

of thumb, operation at 10 C°  above the limit reduces the motor life expectancy by 

50 percent. 

 

The name-plate on the machine usually specifies the continuous-duty, full-load 

operating point in terms of the full-load torque, called the rated torque, and the 

full-load speed, called the rated speed.  The product of these two values specifies 

the full-load power, or the rated power: 

 

 rated rated ratedP Tω=        (6-18) 

 

The maximum speed of a motor is limited due to structural reasons such as the 

capability of the bearings and the rotor to withstand high speeds.  The maximum 

torque that a motor can deliver is limited by the temperature rise within the motor.  

In all machines, higher torque output results in larger power losses.  The 

temperature rise depends on power losses as well as cooling.  In self-cooled 

machines, the cooling is not as effective at lower speeds; this reduces the machine 

torque capability at lower speeds.  The torque-speed capability of electrical 

machines can be specified in terms of a safe operating area (SOA), as shown in 

Fig. 6-12.  The torque capability declines at lower speeds due to insufficient 

cooling.  An expanded area, both in terms of speed and torque, is usually possible 

for intermittent duty and during brief periods of acceleration and deceleration. 
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In addition to the rated power and speed, the name-plate also specifies the rated 

voltage, the rated current (at full-load), and in the case of ac machines, the power 

factor at full load and the rated frequency of operation. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. What is the role of electric machines?  What do the motoring-mode and 

the generating-mode of operations mean? 

2. What are the definitions of stator and rotor? 

3. Why do we use high permeability ferromagnetic materials for stators and 

rotors in electric machines?  Why are these constructed by stacking 

laminations together, rather than as a solid structure? 

4. What is the approximate air gap length in machines with less than 10 kW 

ratings? 

5. What are multi-pole machines?  Why can such machines be analyzed by 

considering only one pair of poles? 

6. Assuming the permeability of iron to be infinite, where is the mmf 

produced by machine coils “consumed”?  What law is used to calculate 

the field quantities, such as flux density, for a given current through a 

coil?  Why is it important to have a small air gap length? 

7. What are the two basic principles of operation for electric machines? 

8. What is the expression for force acting on a current-carrying conductor in 

an externally established B-field?  What is its direction? 

9. What is slot shielding and why can we choose to ignore it? 

10. How do we express the induced emf in a conductor “cutting” an externally 

established B-field?  How do we determine the polarity of the induced 

emf? 

0

Reduced steady-state torque
capability due to lack of
cooling

Torque100%

100%

Speed

Continuous Safe Operating Area

Figure 6-12 Safe Operating Area for electric machines. 
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11. How do electrical machines convert energy from one form to another? 

12. What are various loss mechanisms in electric machines? 

13. How is electrical efficiency defined and what are typical values of 

efficiencies for the machines, the power-processing units, and the overall 

drives? 

14. What is the end-result of power losses in electric machines? 

15. What is meant by the various ratings on the name-plates of machines? 

 

REFERENCES 
 

1. A. E. Fitzgerald, C. Kingsley and S. Umans, Electric machinery, 5th 

edition, McGraw-Hill, Inc., 1990. 

2. G. R. Slemon, Electric Machines and Drives, Addison-Wesley, 1992. 

 

PROBLEMS 
 

6-1 Assume the field distribution for the machine shown in Fig. P6-1 to be 

radially uniform. The magnitude of the air gap flux density is sB , the rotor 

length is � , and the rotational speed of the motor is mω . (a) Plot the emf 

11'e  induced in the coil as a function of θ for two values of ai : 0 A and 10 

A.  (b) In the position shown, the current ai  in the coil 11′  equals oI .  

Calculate the torque acting on the coil in this position for two values of 

instantaneous speed mω : 0 rad/s and 100 rad/s. 

6-2 Figure P6-2 shows a primitive machine with a rotor producing a uniform 

magnetic field such that the air-gap flux density in the radial direction is of 

Figure P6-1 
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the magnitude rB .  Plot the induced emf 11'e  as a function of θ.  The 

length of the rotor is �  and the radius at the air gap is r. 

6-3 In the primitive machine shown in Fig. P6-3, the air-gap flux density sB  

has a sinusoidal distribution given by ˆ cosSB B θ= . The rotor length is � .  

(a) Given that the rotor is rotated at a speed of mω , plot as a function of θ 

the emf 11'e  induced and the torque emT  acting on the coil if ai I= .  (b) In 

the position shown, the current ai  in the coil equals I.  Calculate elP , the 

electrical power input to the machine, and mechP , the mechanical power 

output of the machine, if 60 m rad sω = . 

6-4 In the machine shown in Fig. P6-4, the air-gap flux density rB  has a 

sinusoidal distribution given by ˆ  cosrB B α= , where α  is measured with 

respect to the rotor magnetic axis.  Given that the rotor is rotating at an 

angular speed mω  and the rotor length is � , plot the emf 11'e  induced in 

the coil as a function of θ. 
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−

+
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6-5 In the machine shown in Fig. P6-5, the air gap flux density sB  is constant 

and equal to maxB  in front of the pole faces, and is zero elsewhere.  The 

direction of the B-field is from left (north pole) to right (south pole).  The 

rotor is rotating at an angular speed of mω  and the length of the rotor is � .  

Plot the induced emf 11'e  as a function of θ .  What should be the 

waveform of ai  that produces an optimum electromagnetic torque emT ? 

6-6 As shown in Fig. P6-6, a rod in a uniform magnetic field is free to slide on 

two rails.  The resistance of the rod and the rails are negligible.  Electrical 

continuity between the rails and the rod is assumed, so a current can flow 

Figure P6-6 

.R 0 1= Ω

DCV 50V=
−

+

B 1Tesla=

L 2m=

u

 rotor
magnetic
axis

mω '1
1 θ

'11e

−

+

α

Figure P6-4 

Figure P6-5  

stator
magnetic
axis

mω
'1

1

θ

ai

ai

'11e

−

+

o60

o60

θ



 6-19 

through the rod.  A damping force, dF , tending to slow down the rod, is 

proportional to the square of the rod’s speed as follows: 2
d fF k u=  where 

1500fk = .  Assume that the inductance in this circuit can be ignored.  

Find the steady state speed u  of the rod, assuming the system extends 

endlessly to the right. 

6-7 Consider Fig. P6-7.  Plot the mmf distribution in the air gap as a function 

of θ  for ai I= .  Assume each coil has a single turn. 

6-8 In Fig. P6-8, the stator coil has sN  turns and the rotor coil has rN  turns.  

Each coil produces in the air gap a uniform, radial flux density sB  and rB , 

respectively.  In the position shown, calculate the torque experienced by 

both the rotor coil and the stator coil, due to the currents si  and ri  flowing 

through these coils.  Show that the torque on the stator is equal in 

magnitude but opposite in direction to that experienced by the rotor. 

Figure P6-7 
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CHAPTER  7 

 

DC-MOTOR DRIVES AND 
ELECTRONICALLY-
COMMUTATED MOTOR 
DRIVES 
 

 

 
7-1 INTRODUCTION 

 

Historically, dc-motor drives have been the most popular drives for speed and 

position control applications.  They owe this popularity to their low cost and ease 

of control.  Their demise has been prematurely predicted for many years.  

However, they are losing their market share to ac drives due to wear in their 

commutator and brushes, which require periodic maintenance.  Another factor in 

the decline of the market share of dc drives is cost.  Figure 7-1 shows the cost 

distribution within dc drives in comparison to ac drives at present and in the 

future.  In inflation-adjusted dollars, the costs of ac and dc motors are expected to 

remain nearly constant.  For power processing and control, ac drives require more 

complex electronics (PPUs), making them at present more expensive than in dc-

motor drives.  However, the cost of drive electronics (PPUs) continues to 

decrease.  Therefore, ac drives are gaining market share over dc drives.   
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There are two important reasons to learn about dc drives.  First, a number of such 

drives are currently in use and this number keeps increasing.  Second, the control 

of ac-motor drives emulates the operating principles of dc-motor drives.  

Therefore, knowledge of dc-motor drives forms the first step in learning how to 

control ac drives. 

 

In a dc-motor drive, dc voltage and current are supplied by a power-processing 

unit to the dc motor, as shown in the block diagram of Fig. 7-2.  There are two 

designs of dc machines: stators consisting of either permanent magnets or a field 

winding.  The power-processing units can also be classified into two categories: 

switch-mode power converters that operate at a high switching frequency, as 

discussed in Chapter 4, or line-commutated, thyristor converters, which are 

discussed later in Chapter 16.  In this chapter, our focus will be on small servo-

drives, which usually consist of permanent-magnet motors supplied by switch-

mode power electronic converters. 

 

cost cost

PPU PPU PPU PPU

motor motor

motor motor

PresentPresent FutureFuture

DC motor drives AC motor drives

Figure 7-1 Cost distribution with dc and ac drives. 

Figure 7-2 Classification of dc drives. 
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At the end of this chapter, a brief discussion of Electronically-Commutated 

Motors (ECM) is included as a way of reinforcing the concept of current 

commutation, as well as a way of introducing an important class of motor drives 

which do not have the problem of wear in commutator and brushes. 

 

7-2 THE STRUCTURE OF DC MACHINES 

 

Figure 7-3 shows a cut-away view of a dc motor.  It shows a permanent-magnet 

stator, a rotor which carries the armature winding, a commutator, and the brushes.  

In dc machines, the stator establishes a uniform flux fφ  in the air gap in the radial 

direction (the subscript “ f ” is for field).  If permanent magnets like those shown 

in the cross-section of Fig. 7-4a are used, the air gap flux density established by 

the stator remains constant (it cannot be changed).  A field winding whose current 

can be varied can be used to achieve an additional degree of control over the air 

gap flux density, as shown in Fig. 7-4b. 

 

Figs. 7-3 and 7-5 show that the rotor slots contain a winding, called the armature 

winding, which handles electrical power for conversion to (or from) mechanical 

power at the rotor shaft.  In addition, there is a commutator affixed to the rotor.  

On its outer surface, the commutator contains copper segments which are 

  stator
magnets

   rotor
winding

Figure 7-3 Exploded view of a dc motor; source: Engineering Handbook by 
Electro-Craft Corp [5]. 
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electrically insulated from each other by means of mica or plastic.  The coils of 

the armature winding are connected to these commutator segments so that a 

stationary dc source can supply voltage and current to the rotating cummutator by 

means of stationary carbon brushes which rest on top of the commutator.  The 

wear due to the mechanical contact between the commutator and the brushes 

requires periodic maintenance, which is the main drawback of dc machines. 

 

7-3 OPERATING PRINCIPLES OF DC MACHINES 
 

The basic principle that governs the production of a steady electromagnetic torque 

has already been introduced in Chapter 6.  A rotor coil in a uniform radial field 

established by the stator was supplied with a current, which reversed direction 

every half-cycle of rotation.  The induced emf in the coil also alternated every 

half-cycle.   

 

Permanent
  magnets

Figure 7-4 Cross-sectional view of magnetic field produced by stator. 
(a) (b) 

Figure 7-5 DC motor armatures [5]. 
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In practice, this reversal of current can be realized in the dc machine (still 

primitive) shown in Fig. 7-6a, using two commutator segments (s1 and s2) and 

two brushes (b1 and b2).  Using the notations commonly adopted in the context of 

dc machines, the armature quantities are indicated by the subscript “a”, and the 

density of the stator-established flux (that crosses the two air gaps) is called the 

field flux density fB , whose distribution as function of θ  in Fig. 7-6b is plotted 

in Fig. 7-6c.  In the plot of Fig. 7-6c, the uniform flux density fB  in the air gap is 

assumed to be positive under the south pole and negative under the north pole.  

There is also a small "neutral" zone where the flux density is small and is 

changing from one polarity to the other. 

 

We will see how the commutator and the brushes in the primitive (non-practical) 

machine of Fig. 7-6a convert a dc current ai  supplied by a stationary source into 

an alternating current in the armature coil.  The cross-sectional view of this 

primitive machine, looking from the front, is represented in Fig. 7-7.  For the 

position of the coil at 0θ = °  shown in Fig. 7-7a, the coil current '1 1
i

−
 is positive 

and a counter-clockwise force is produced on each conductor.  Figure 7-7b shows 

the cross-section when the rotor has turned counter-clockwise by 90θ = ° .  The 

brushes are wider than the insulation between the commutator segments.  

Therefore, in this elementary machine, the current ai  flows through the 

back-end

fφN S

1b

mω

1b

2b1s

2s

ai

0θ =

θ

SN

fB

0θ =

θ0

(a) 

(b) 

(c) 
Figure 7-6 Flux density in the air gap. 
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commutator segments and no current flows through the conductors.  In this 

region, the coil undergoes "commutation" where its current direction reverses as 

the rotor turns further.  Fig. 7-7c shows the cross-section at the rotor position 

180θ = ° .  Compared to Fig. 7-7a at 0θ = ° , the roles of conductors 1 and 1′  are 

interchanged; hence at 180θ = ° , '1 1
i

−
 is negative and the same counter-clockwise 

torque as at 0θ = ° is produced. 

 

The above discussion shows how the commutator and brushes convert a dc 

current at the armature terminals of the machine into a current that alternates 

every half-cycle through the armature coil.  In the armature coil, the induced emf 

also alternates every half-cycle and is “rectified” at the armature terminals.  The 

current and the induced emf in the coil are plotted in Fig. 7-8a as a function of the 

rotor position θ .  The torque on the rotor and the induced emf appearing at the 

brush terminals are plotted in Figs. 7-8b and 7-8c where their average values are 

indicated by the dotted lines.  Away from the “neutral zone,” the torque and the 

induced emf expressions, in accordance with Chapter 6, are as follows: 

 

 (2 )em f aT B r i= �   (7-1) 

and 

 (2 )a f me B r ω= �   (7-2) 

 

1 '1

+ −

emT
mω

2S1S
θ

SN

ai

ae
+ −

1

'1

2S

1S

θ

SN

ai

ae
+ −

1'1

+−

2S

1S

θ

SN

ai

+ −
ae

(a) (b) (c) 
Figure 7-7 Torque production and commutator action. 
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where �  is effective conductor length and r  is the radius.  Notice the pronounced 

dip in the torque and the induced emf waveforms.  These waveforms are 

improved by having a large number of distributed coils in the armature, as 

illustrated in the following example. 

 

�  Example 7-1   Consider the elementary dc machine shown in Fig. 7-9 whose 

stator poles produce a uniform, radial flux density fB  in the air gap.  The 

armature winding consists of 4 coils {1-1', 2-2', 3-3', and 4-4'} in 4 rotor slots.  A 

dc current ai  is applied to the armature as shown.  Assume the rotor speed to be 

mω  (rad/s).  Plot the induced emf across the brushes and the electromagnetic 

torque emT  as a function of the rotor position θ . 

 

Solution     Fig. 7-9 shows three rotor positions measured in a counter-clockwise 

(CCW) direction: 0, 45θ = °  and 90° .  This figure shows how coils 1 and 3 go 

through current commutation.  At θ = 0o , the currents are from 1 to 1' and from 3' 

to 3.  At θ = 45o , the currents in these coils are zero.  At θ =90° , the two currents 

have reversed direction.  The total torque and the induced emf at the brush 

terminals are plotted in Fig. 7-10. �  

 

If we compare the torque emT  and the emf ae  waveforms of the 4-coil winding in 

Fig. 7-10 to those for the 1-coil winding in Fig. 7-8, it is clear that pulsations in 

Figure 7-8 Waveforms for the motor in Fig. 7-7. 

θ

, ' ',1 1 1to1e i

o0 o90 o180 o270 o360
( )emT t

emT
( )average

aE
( )average

( )ae t

θ

0

0 o0 o90 o180 o270 o360

θ0 o0 o90 o180 o270 o360

(a) 

(b) 

(c) 



 7-8 

the torque and in the induced emf are reduced by increasing the number of coils 

and slots.  Practical dc machines consist of a large number of coils in their 

armature windings.  Therefore, we can neglect the effect of the coils in the 

"neutral" zone undergoing current commutation, and the armature can be 

Figure 7-9 The dc machine in Example 7-1 (a) at � = 0o ;(b) CCW rotation by 45o; 
                 (c) CCW rotation by 90o. 
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represented as shown in Fig. 7-11.  The following conclusions regarding the 

commutator action can be drawn: 

 

• The armature current ai  supplied through the brushes divides 

equally between two circuits connected in parallel.  Each circuit 

consists of half of the total conductors, which are connected in 

series.  All conductors under a pole have currents in the same 

direction.  The respective forces produced on each conductor are in 

the same direction and add up to yield the total torque.  The 

direction of the armature current ai  determines the direction of 

currents through the conductors. (The current direction is 

independent of the direction of rotation.)  Therefore, the direction 

of the electromagnetic torque produced by the machine also 

depends on the direction of ai .   

 

• The induced voltage in each of the two parallel armature circuits, 

and therefore across the brushes, is the sum of the voltages induced 

in all conductors connected in series.  All conductors under a pole 

have induced emfs of the same polarity.  The polarity of these 

induced emfs depends on the direction of rotation.  (The emf 

polarity is independent of the current direction.) 

 

Figure 7-10 Torque and emf for Example 7-1. 
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We can now calculate the net torque produced and the emf induced.  In the dc 

machine represented in Fig. 7-11, let there be a total of an  conductors, each of 

length l, placed in a uniform and radial flux density fB .  Then, the 

electromagnetic torque produced by a current 
2
ai  can be calculated by multiplying 

the force per conductor by the number of conductors and the radius r : 

 

 ( )
2
a

em a f

i
T n rB= �   (7-3) 

 

In a machine, the values of an , �  and r are fixed.  The flux density fB  also has a 

fixed value in a permanent-magnet machine.  Therefore, we can write the torque 

expression as  

 

 em aTT k i=  where  
2
a

fT

n
k r B =   

�   [ ]
Nm

A
   (7-4) 

 

This expression shows that the magnitude of the electromagnetic torque produced 

is linearly proportional to the armature current ai .  The constant Tk  is called the 

"Motor Torque Constant" and is given in motor specification sheets.  From the 

discussion in Chapter 6, we know that we can reverse the direction of the 

electromagnetic torque by reversing ai .   

 

emT
r

ai

ae

+

−

SN

Figure 7-11 DC machine schematic representation. 
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At a speed of mω  (rad/s), the induced emf ae  across the brushes can be calculated 

by multiplying the induced emf per conductor by / 2an , which is the number of 

conductors in series in each of the two parallel connected armature circuits.  Thus, 

 

 
2
a

a f m

n
e rB ω =   

�   (7-5) 

 

Using the same arguments as before for the torque, we can write the induced 

voltage expression as 

 

 a E= me k ω  where   
2
a

fE

n
k r B =   

�    [ ]
/

V

rad s
  (7-6) 

 

This shows that the magnitude of the induced emf across the brushes is linearly 

proportional to the rotor speed mω .  It also depends on the constant Ek , which is 

called the "Motor Voltage Constant" and is specified in motor specification 

sheets.  The polarity of this induced emf is reversed if the rotational speed mω  is 

reversed. 

 

We should note that in any dc machine, the torque constant Tk  and the voltage 

constant Ek  are exactly the same, as shown by Eqs. 7-4 and 7-6, provided that we 

use the MKS units: 

 

  
2
a

fT E

n
k k r B= =

 
  

�   (7-7) 

 

7-3-1 Armature Reaction 

 

Figure 7-12a shows the flux lines fφ  produced by the stator.  The armature 

winding on the rotor, with ai  flowing through it, also produces flux lines, as 

shown in Fig. 7-12b.  These two sets of flux lines - fφ  and the armature flux aφ  - 

are at a right angle to each other.  Assuming that the magnetic circuit does not 
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saturate, we can superimpose the two sets of flux lines and show the combined 

flux lines in the air gap as in Fig. 7-12c.  The fluxes aφ  and fφ  add in certain 

portions and subtract in the other portions.  If the magnetic saturation is neglected 

as we have assumed, then due to the symmetry of the machine, the effect of an 

increased torque produced by conductors under higher flux density is canceled out 

by decreased torque produced by conductors under lower flux density.  The same 

holds true for the induced emf ae .  Therefore, the calculations of the torque emT  

and the induced emf ae  in the previous section remain valid. 

 

If aφ  is so high that the net flux may saturate portions of the magnetic material in 

its path, then the superposition of the previous section is not valid.  In that case, at 

high values of aφ  the net flux in the air gap near the saturated magnetic portions 

will be reduced compared to its value obtained by superposition.  This will result 

in degradation in the torque produced by the given armature current.  This effect 

is commonly called “saturation due to armature reaction.”  In our discussion we 

can neglect magnetic saturation and other ill-effects of armature reaction because 

in permanent-magnet machines the mmf produced by the armature winding 

results in a small aφ .  This is because there is a high magnetic reluctance in the 

path of aφ .  In field-wound dc machines, countermeasures can be taken: the mmf 

produced by the armature winding can be neutralized by passing the armature 

current in the opposite direction through a compensating winding placed on the 

pole faces of the stator, and through the commutating-pole windings, as shown in 

Fig. 7-13. 

 

 

 

Figure 7-12 Effect of armature reaction. 

(a) (b) (c) 
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7-4 DC-MACHINE EQUIVALENT CIRCUIT 

 

It is often convenient to discuss a dc machine in terms of its equivalent circuit of 

Fig. 7-14a, which shows conversion between electrical and mechanical power.  In 

this figure, an armature current ai  is flowing.  This current produces the 

electromagnetic torque ( )em T aT k i=  necessary to rotate the mechanical load at a 

speed of mω .  Across the armature terminals, the rotation at the speed of mω  

induces a voltage, called the back-emf ( )a E me k ω= .   

 

On the electrical side, the applied voltage av  overcomes the back-emf ae  and 

causes the current ai  to flow.  Recognizing that there is a voltage drop across both 

LJ

−

+
av

−

+

a E me k ω=
,em mT ω

aL

aR

em
a

T

T
i

k
=

LT

MJ

(a) (b) 

Figure 7-14 (a) Equivalent circuit of a dc motor; (b) steady state characteristics. 

 constant at its rated valuefφ
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Figure 7-13 Compensating and commutating windings. 
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the armature winding resistance aR  (which includes the voltage drop across the 

carbon brushes) and the armature winding inductance aL , we can write the 

equation of the electrical side as 

 

 i a
a a a a a

di
v e R L

dt
= + +  (7-8) 

 

On the mechanical side, the electromagnetic torque produced by the motor 

overcomes the mechanical-load torque LT  to produce accelaration: 

 

 
1

( )m
em L

eq

d
T T

dt J

ω = −   (7-9) 

 

where eqJ  is the total effective value of the combined inertia of the dc machine 

and the mechanical load.   

 

Note that the equations of the electric system and the mechanical system are 

coupled.  The back-emf ae  in the electrical-system equation (Eq. 7-8) depends on 

the mechanical speed mω .  The torque emT  in the mechanical-system equation 

(Eq. 7-9) depends on the electrical current ai .  The electrical power absorbed from 

the electrical source by the motor is converted into mechanical power and vice 

versa.  In steady state, with a voltage aV  applied to the armature terminals, and a 

load-torque LT  supplied as well, 

 

 
( )em L

a
T

T T
I

k

==    (7-10) 

Also, 

 a a a a
m

E E

E V R I

k k
ω −= =   (7-11) 

 

The steady state torque-speed characteristics for various values of aV  are plotted 

in Fig. 7-14b. 
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�  Example 7-2   A permanent-magnet dc motor has the following parameters: 

0.35aR = Ω  and 0.5E Tk k= =  in MKS units.  For a torque of up to 8 Nm, plot its 

steady state torque-speed characteristics for the following values of aV : 100V, 

75V, and 50V. 

 

Solution      Let’s consider the case of 100aV V= .  Ideally, at no-load (zero 

torque), from Eq. 7-10, 0aI = .  Therefore, from Eq. 7-11, the no-load speed is 

 

 
100

200 /
0.5

a
m

E

V
rad s

k
ω = = = . 

 

At a torque of 8 Nm, from Eq. 7-10, 
8

16
0.5a

Nm
I A= = .  Again using Eq. 7-11, 

 

 
100 0.35 16

188.8 /
0.5m rad sω − ×= = . 

 

The torque-speed characteristic is a straight line, as shown in Fig. 7-15. 

 

Similar characteristics can be drawn for the other values of aV : 75V  and 50V . �  

 

 
7-5 VARIOUS OPERATING MODES IN DC-MOTOR DRIVES 

 

The major advantage of a dc-motor drive is the ease with which torque and speed 

can be controlled.  A dc drive can easily be made to operate as a motor or as a 

Figure 7-15 Example 7-2. 
emT8 Nm

50V

( / )m rad sω

200

75V

aV 100V=

0
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generator in forward or reverse direction of rotation.  In our prior discussions, the 

dc machine was operating as a motor in a counter-clockwise direction (which we 

will consider to be the forward direction).  In this section, we will see how a dc 

machine can be operated as a generator during regenerative braking and how its 

speed can be reversed. 

 

7-5-1  Regenerative Braking 

 

Today, dc machines are seldom used as generators per se, but they operate in the 

generator mode in order to provide braking.  For example, regenerative braking is 

used to slow the speed of a dc-motor-driven electric vehicle (most of which use 

brushless-dc motor drives, discussed in Chapter 10, but the principle of 

regeneration is the same) by converting kinetic energy associated with the inertia 

of the vehicle into electrical energy, which is fed into the batteries.   

 

Initially, let's assume that a dc machine is operating in steady state as a motor and 

rotating in the forward direction as shown in Fig. 7-16a.  A positive armature 

voltage av , which overcomes the back-emf ae , is applied and the current ai  flows 

to supply the load torque.  The polarities of the induced emfs and the directions of 

the currents in the armature conductors are also shown. 

 

One way of slowing down this dc-motor-driven electric vehicle is to apply 

mechanical brakes.  However, a better option is to let the dc machine go into the 

generator mode by reversing the direction in which the electromagnetic torque 

ai

fφ
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+

mωemT
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+
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−
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Figure 7-16 Regenerative braking. 

ai = −

fφ
av

−

+

mω

emT

aφ

+
+

+

+
+

+

−−
−
−

−

LJ

−

+
av

−

+

a E me k ω=

emT

aL

aR

ai = −

mω

LT



 7-17 

emT  is produced.  This is accomplished by reversing the direction of the armature 

current, which is shown to have a negative value in Fig. 7-16b.  Since the machine 

is still turning in the same direction (forward and counter-clockwise), the induced 

back-emf ae  remains positive.  The armature-current direction can be reversed by 

decreasing the applied voltage av  in comparison to the back-emf ae  (that is, 

a av e< ).  The current reversal through the conductors causes the torque to reverse 

and oppose the rotation.  Now, the power from the mechanical system (energy 

stored in the inertia) is converted and supplied to the electrical system.  The 

equivalent circuit of Fig. 7-16c in the generator mode shows the power being 

supplied to the electrical source (batteries, in the case of electrical vehicles). 

 

Note that the torque ( )em T aT k i=  depends on the armature current ai .  Therefore, 

the torque will change as quickly as ai  is changed.  DC motors for servo 

applications are designed with a low value of the armature inductance aL ; 

therefore, ai  and emT  can be controlled very quickly. 

 

�  Example 7-3   Consider the dc motor of Example 7-2 whose moment-of-

inertia 20.02mJ kg m= ⋅ .  Its armature inductance aL  can be neglected for slow 

changes.  The motor is driving a load of inertia 20.04LJ kg m= ⋅ .  The steady state 

operating speed is 300 rad/s.  Calculate and plot the ( )av t  that is required to bring 

this motor to a halt as quickly as possible, without exceeding the armature current 

of 12 A. 

 

Solution     In order to bring the system to a halt as quickly as possible, the 

maximum allowed current should be supplied, that is 12ai A= − .  Therefore, 

6em E aT k i Nm= = − .  The combined equivalent inertia is 20.06eqJ kg m= ⋅ .  From 

Eq. 7-9 for the mechanical system,  

 

 
1

( 6.0) 100 /
0.06

md
rad s

dt

ω = − = − . 
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Therefore, the speed will reduce to zero in 3 s in a linear fashion, as plotted in Fig. 

7-17. 

 

At time 0t += ,  

 

 150a E mE k Vω= =  and  

 150 0.35( 12) 145.8a a a aV E R I V= + = + − = . 

 

Both ae  and av  linearly decrease with time, as shown in Fig. 7-17. �  

 

7-5-2 Operating in the Reverse Direction 

 

Applying a reverse–polarity dc voltage to the armature terminals makes the 

armature current flow in the opposite direction.  Therefore, the electromagnetic 

torque and the motor speed will also be reversed.  Just as for the forward 

direction, regenerative braking is possible during rotation in the reverse direction. 

 

7-5-3 Four-Quadrant Operation 

 

As illustrated in Fig. 7-18, a dc machine can be easily operated in all four 

quadrants of its torque-speed plane.  For example, starting with motoring in the 

forward direction, it can be made to go into the other quadrants of operation by 

reversing the armature current and then reversing the applied armature voltage. 

Figure 7-17 Example 7-3. 
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7-6 FLUX WEAKENING IN WOUND-FIELD MACHINES 
 

In dc machines with a wound field, the field flux fφ  and the flux density fB  can 

be controlled by adjusting the field-winding current fI .  This changes the 

machine torque-constant and the voltage-constant given by Eqs. 7-4 and 7-6, both 

of which can be written explicitly in terms of fB  as 

 

 T t fk k B=         (7-12) 

and 

 E e fk k B=         (7-13) 

 

where the constants tk  and ek  are also equal to each other. 

 

Below the rated speed, we will always keep the field flux at its rated value so that 

the torque constant Tk  is at its maximum value, which minimizes the current 

required to produce the desired torque, thus minimizing 2i R  losses.  At the rated 

field flux, the induced back-emf reaches its rated value at the rated speed.  What if 

we wish to operate the machine at speeds higher than the rated value?  This would 

require a terminal voltage higher than the rated value.  To work around this, we 

can reduce the field flux, which allows the motor to be operated at speeds higher 
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than the rated value without exceeding the rated value of the terminal voltage.  

This mode of operation is called the flux-weakening mode.  Since the armature 

current is not allowed to exceed its rated value, the torque capability drops off as 

shown in Fig. 7-19 due to the reduction of the torque constant Tk  in Eq. 7-12. 

 

7-7 POWER-PROCESSING UNITS IN DC DRIVES 

 

In dc drives, the power-processing unit provides dc voltage and current to the 

armature of the dc machine.  In general, this unit should be very energy efficient 

and should have a low cost.  Depending on its application, the dc drive may be 

required to respond quickly and may also be operated in all 4-quadrants of Fig. 7-

18.  Therefore, both av  and ai  must be adjustable and reversible and independent 

of each other. 

 

In most cases, the power-processing unit shown in Fig. 7-2 is an interface 

between the electric utility and the dc machine (notable exceptions are vehicles 

supplied by batteries).  Therefore, the power processor must draw power from the 

utility without causing or being susceptible to power quality problems.  Ideally, 

the power flow through the PPU should be reversible into the utility system.  The 

PPU should provide voltage and current to the dc machine with waveforms as 

close to a dc as possible.  Deviations from a pure dc in the current waveform 

result in additional losses within the dc machine. 

,

em

em rated

T

T

2

0 1

rated
rated
varied

a

a

f

V
I
φ

=
=
=

rated
rated
rated

a

a

f

V
I
φ

=
=
=









,

m

m rated

ω
ω

1

Figure 7-19 Field weakening in wound field machines. 
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Power-processing units that utilize switch-mode conversion have already been 

discussed in Chapter 4.  Their block diagram is repeated in Fig. 7-20.  The “front-

end” of such units is usually a diode-rectifier bridge (which will be discussed in 

detail in Chapter 16).  It is possible to replace the diode-rectifier “front-end” with 

a switch-mode converter to make the power flow into the utility during 

regenerative braking (also discussed in Chapter 16).  The design of the feedback 

controller for dc drives will be discussed in detail in Chapter 8.  

 

7-8 ELECTRONICALLY-COMMUTATED (TRAPEZOIDAL 
WAVEFORM, BRUSH-LESS DC) MOTOR DRIVES 

 

Earlier in this chapter, we have seen that the role of the commutator and the 

brushes is to reverse the direction of current through a conductor based on its 

location.  The current through a conductor is reversed as it moves from one pole 

to the other.  In brush-type dc motors discussed previously, the field flux is 

created by permanent magnets (or a field winding) on the stator, while the power-

handling armature winding is on the rotor. 

 

In contrast, in Electronically-Commutated Motors (ECM), the commutation of 

current is provided electronically based on the positional information obtained 

from a sensor.  These are “inside-out” machines where the magnetic field is 

established by the permanent magnets located on the rotor and the power handling 

winding is placed on the stator, as shown in Fig. 7-21a.  The block diagram of the 
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filter
capacitor

ac to dc
rectifier

Power Processing Unit

dc-dc converter

+

−
dv

+

−
av

ai
BT +

BT −

A
T +

A
T −

triv
cv

line voltage

Figure 7-20 Switch-mode converter based PPU for dc-motor drives. 
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drive, including the PPU and the position sensor, is shown in Fig. 7-21b.  The 

stator in Fig. 7-21a contains three-phase windings, which are displaced by 120 

degrees.  We will concentrate only on phase-a, because the roles of the other two 

phases are identical.  The phase-a winding spans 60 degrees on each side, thus a 

total of 120 degrees, as shown in Fig. 7-21a.  It is connected in a wye-

arrangement with the other phases, as shown in Fig. 7-21b.  It is distributed 

uniformly in slots, with a total of 2 sN  conductors, where all of the conductors of 

the winding are in series.  We will assume that the rotor produces a uniform flux 

density fB  distribution of flux lines crossing the air gap, rotating at a speed mω  in 

a counter-clockwise direction.  The flux-density distribution established by the 

rotor is rotating but the conductors of the stator windings are stationary.  The 

principle of the induced emf e B u= �  discussed in Chapter 6 is valid here as well.  

This is confirmed by the example below. 
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�  Example 7-4   Show that the principle e B u= �  applies to situations in which 

the conductors are stationary but the flux-density distribution is rotating. 

 

Solution     In Fig. 7-21a, take a conductor from the top group and one from the 

bottom group at 180 degrees, forming a coil, as shown in Fig. 7-22a.  Fig. 7-22b 

shows that the flux linkage of the coil is changing as a function of the rotor 

position δ  (with 0δ =  at the position shown in Fig. 7-22a).  The peak flux 

linkage of the coil occurs at radians
2

πδ = ; 

 

 ˆ ( )coil frl Bλ π=         (7-14) 

 

where �  is the rotor length and r  is the radius.  From Faraday’s Law, the coil 

voltage equals the rate of change of the flux linkage.  Therefore, recognizing that 

m

d

dt

δ ω= , 

 

( )
2

/ 2
cond

fcoil coil
coil m f m

e

r Bd d d
e B r

dt d dt

πλ λ δ ω ω
δ π

= = = =
�

�
�����

   0
2

πδ≤ ≤  (7-15) 

where 

 
�

cond f m f

u

e B r B uω= =� � . (7-16) 

 

This proves that we can apply e B u= �  to calculate the conductor voltage. 
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Using Fig. 7-22c, we will obtain the polarity of the induced emf in the conductors, 

without calculating the flux linkage and then its time-rate-of-change.  We will 

assume that the flux-density distribution is stationary but that the conductor is 

moving in the opposite direction, as shown in the right side of Fig. 7-22c.  

Applying the rule discussed earlier regarding determining the voltage polarity 

shows that the polarity of the induced emf is negative in the top conductor and 

positive in the bottom conductor.  This results in the coil voltage (with the 

polarity indicated in Fig. 7-22a) to be as shown in Fig. 7-22b. �  

 

7-8-1 Induced EMF 
 

Returning to the machine of Fig. 7-21a, using the principle e B u= �  for each 

conductor, the total induced emf in the rotor position shown in Fig. 7-21a is  

 

 2a s f me N B rω= �   (7-17) 

 

Up to a 60-degree movement of the rotor in the counter-clockwise direction, the 

induced voltage in phase-a will be the same as that calculated by using Eq. 7-17.  

Beyond 60 degrees, some conductors in the top are “cut” by the north pole and the 

others by the south pole.  The same happens in the bottom group of conductors.  

Therefore, the induced emf ae  linearly decreases during the next 60-degree 

interval, reaching an opposite polarity but the same magnitude as that given by 

Eq. 7-17.  This results in a trapezoidal waveform for ae  as a function of δ , 

plotted in Fig. 7-23.  The other phases have similar induced waveforms, displaced 

by 120 degrees with respect to each other.  Notice that during every 60-degree 

interval, two of the phases have emf waveforms that are flat.  We will discuss 

shortly in section 7-8-2 that during each 60-degree interval, the two phases with 

the flat emf waveforms are effectively connected in series and the current through 

them is controlled, while the third phase is open.  Therefore, the phase-phase 

back-emf is twice that of Eq. 7-17: 

 

 2(2 )ph ph s f me N B rω− = �  (7-18) 

or 
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 ph ph E me k ω− =    where    4E s fk N B r= �  (7-19) 

 

Ek  is the voltage constant in V/(rad/s). 

 

7-8-2 Electromagnetic Torque 
 

Let’s assume that phase-a in Fig. 7-21a has a constant current ai I=  while the 

rotor is rotating.  The forces, and hence the torque developed by the phase-a 

conductors, can be calculated using f B i= � , as shown in Fig. 7-24a.  The torque 

on the rotor is in the opposite (counter-clockwise) direction.  The torque ,em aT  on 

the rotor due to phase- a , with a constant current ( )ai I= , is plotted in Fig. 7-24b as 

a function of δ .  Notice that it has the same waveform as the induced voltages, 

becoming negative when the conductors are “cut” by the opposite pole flux.  

Similar torque functions are plotted for the other two phases.  For each phase, the 

torque functions with a negative value of current are also plotted by dotted 

waveforms; the reason for doing so is described in the next paragraph. 

 

Our objective is to produce a net electromagnetic torque which does not fluctuate 

with the rotor position.  Therefore, how should the currents in the three windings 

be controlled, in view of the torque waveforms in Fig. 7-24b for I+  and I− ?  

First, let’s assume that the three-phase windings are wye-connected, as shown in 

Fig. 7-21b.  Then in the waveforms of Fig. 7-24b, during each 60-degree interval, 

we will pick the torque waveforms that are positive and have a flat-top.  The 

phases are indicated in Fig. 7-24c, where we notice that during each 60-degree 
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Figure 7-23 Induced emf in the three phases. 
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interval, we will require one phase to have a current I+  (indicated by +), the 

other to have I−  (indicated by -), and the third to have a zero current (open).  

These currents satisfy Kirchhoff’s Current Law in the wye-connected phase 

windings.  The net electromagnetic torque developed by combining the two 

phases can be written as 

 

 2 2em s f

each phase

T N B rI= × �
�����

  (7-20) 

or 

 

 em TT k I=   where   4T s fk N B r= �  (7-21) 

 

Tk  is the torque constant in Nm/A.  Notice from Eqs. 7-19 and 7-21 that in MKS 

units, 4E T s fk k N B r= = � . 

 

In the switch-mode inverter of Fig. 7-21b, we can obtain these currents by pulse-

width-modulating only two poles in each 60-degree interval, as depicted in Fig. 7-

25a.  The current can be regulated to be of the desired magnitude by the 

hysteresis-control method depicted in Fig. 7-25b.  During interval 1, having pole-
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Figure 7-24 (a) Force directions for phase-a conductors; (b) Torque waveforms;  
(c) phase currents for a constant torque. 
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a in the top position and pole-b in the bottom position causes the current through 

phases a  and b  to build up.  When this current tends to exceed the upper 

threshold, the pole positions are reversed, causing the current to decline.  When 

the current tends to fall below the lower threshold, the pole positions are reversed 

causing the current to once again increase.  This allows the current to be 

maintained within a narrow band around the desired value. (It should be noted 

that in practice, to decrease the current, we can move both poles to the top 

position or to the bottom position and the current will decrease due to the back-

emf ph phe −  associated with phases a  and b  connected in series.) 

 

7-8-3 Torque Ripple 
 

Our previous discussion would suggest that the torque developed by this motor is 

smooth, provided that the ripple in the current depicted in Fig. 7-25c can be kept 

to a minimum.  In practice, there is a significant torque fluctuation every 60-

degrees of rotation due to the imperfections of the flux-density distribution and 

the difficulty of providing rectangular pulses of phase currents, which need to be 

timed accurately based on the rotor position sensed by a mechanical transducer 

connected to the rotor shaft.  We will briefly look at such position sensors in 

Chapter 17.  However, it is possible to eliminate the sensor, making such drives 

sensorless by mathematical calculations based on the measured voltage of the 

phase that is open.  In applications where a smooth torque is needed, the 

trapezoidal-emf brush-less dc motors are replaced with sinusoidal-waveform 

brush-less motors, which are discussed in Chapter 10. 
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SUMMARY/REVIEW QUESTIONS 
 

1. What is the breakdown of costs in dc-motor drives relative to ac-motor 

drives? 

2. What are the two broad categories of dc motors? 

3. What are the two categories of power-processing units? 

4. What is the major drawback of dc motors? 

5. What are the roles of commutator and brushes? 

6. What is the relationship between the voltage-constant and the torque-

constant of a dc motor?  What are their units? 

7. Show the dc-motor equivalent circuit.  What does the armature current 

depend on?  What does the induced back-emf depend on? 

8. What are the various modes of dc-motor operation?  Explain these modes 

in terms of the directions of torque, speed, and power flow. 

9. How does a dc-motor torque-speed characteristic behave when a dc motor 

is applied with a constant dc voltage under an open-loop mode of 

operation? 

10. What additional capability can be achieved by flux weakening in wound-

field dc machines? 

11. What are various types of field windings? 

12. Show the safe operating area of a dc motor and discuss its various limits. 

13. Assuming a switch-mode power-processing unit, show the applied voltage 

waveform and the induced emf for all four modes (quadrants) of 

operation. 

14. What is the structure of trapezoidal-waveform  electronically-commutated 

motors? 

15. How can we justify applying the equation e B u= �  in a situation where the 

conductor is stationary but the flux-density distribution is moving? 

16. How is the current controlled in a switch-mode inverter supplying ECM? 

17. What is the reason for torque ripple in ECM drives? 
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PROBLEMS 
 

Permanent-Magnet DC-Motor Drives 

 

7-1 Consider a permanent-magnet dc motor with the following parameters:  

aR  = 0.35 Ω , aL  = 1.5 mH, Ek  = 0.5 V/(rad/s), Tk  = 0.5 Nm/A, and mJ  = 

0.02 2kg m⋅ .  The rated torque of this motor is 4 Nm .  Plot the steady 

state torque-speed characteristics for aV  = 100 V, 60 V, and 30 V. 

7-2 The motor in Problem 7-1 is driving a load whose torque requirement 

remains constant at 3 Nm, independent of speed.  Calculate the armature 

voltage aV  to be applied in steady state, if this load is to be driven at 1,500 

rpm. 

7-3 The motor in Problem 7-1 is driving a load at a speed of 1,500 rpm.  At 

some instant, it goes into regenerative braking.  Calculate the armature 

voltage av  at that instant, if the current ai  is not to exceed 10 A in 

magnitude.  Assume that the inertia is large and thus the speed changes 

very slowly. 

7-4 The motor in Problem 7-1 is supplied by a switch-mode dc-dc converter 

which has a dc-bus voltage of 200 V.  The switching frequency fs = 25 

kHz.  Calculate and plot the waveforms for ( )av t , ae , ( )ai t , and ( )di t  

under the following conditions: 

(a) Motoring in forward direction at a speed of 1,500 rpm, supplying a 

load of 3 Nm. 

(b) Regenerative braking from conditions in (a), with a current of 10 A. 
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(c) Motoring in reverse direction at a speed of 1,500 rpm, supplying a load 

of 3 Nm. 

(d) Regenerative braking from conditions in (c), with a current of 10 A. 

7-5 The motor in Problem 7-1 is driving a load at a speed of 1,500 rpm.  The 

load inertia is 0.04 2kg m⋅  and it requires a torque of 3 Nm.  In steady 

state, calculate the peak-to-peak ripple in the armature current and speed if 

it is supplied by the switch-mode dc-dc converter of Problem 7-4. 

7-6 In Problem 7-5, what is the additional power loss in the armature 

resistance due to the ripple in the armature current?  Calculate this as a 

percentage of the loss if the motor was supplied by a pure dc source. 

7-7 The motor in Problem 7-1 is driving a load at a speed of 1,500 rpm.  The 

load is purely inertial with an inertia of 0.04 2kg m⋅ .  Calculate the energy 

recovered by slowing it down to 750 rpm while keeping the current during 

regenerative braking at 10 A. 

7-8 A permanent-magnet dc motor is to be started from rest.  aR  = 0.35 Ω , Ek  

= 0.5 V /(rad/s), Tk  = 0.5 Nm/A, and mJ  = 0.02 2kg m⋅ .  This motor is 

driving a load of inertia LJ  = 0.04 2kg m⋅ , and a load torque LT  = 2 Nm. 

The motor current must not exceed 15 A.  Calculate and plot both the 

voltage av , which must be applied to bring this motor to a steady state 

speed of 300 rad/s as quickly as possible, and the speed, as functions of 

time.  Neglect the effect of aL .   

7-9 The dc motor of Problem 7-1 is operating in steady state with a speed of 

300 rad/s.  The load is purely inertial with an inertia of 0.04 2kg m⋅ .  At 

some instant, its speed is to decrease linearly and reverse to 100 rad/s in a 

total of 4 s.  Neglect aL  and friction.  Calculate and plot the required 

current and the resulting voltage av  that should be applied to the armature 

terminals of this machine.  As intermediate steps, calculate and plot ae , the 

required electromagnetic torque emT  from the motor, and the current ai . 

7-10 The permanent-magnet dc motor of Example 7-3 is to be started under a 

loaded condition.  The load-torque LT  is linearly proportional to speed and 

equals 4 Nm at a speed of 300 rad/s.  Neglect aL  and friction.  The motor 

current must not exceed 15 A.  Calculate and plot the voltage av , which 
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must be applied to bring this motor to a steady state speed of 300 rad/s as 

quickly as possible. 

 

Wound-Field DC-Motor Drives 

 

7-11 Assume that the dc-motor of Problem 7-1 has a wound field.  The rated 

speed is 2,000 rpm.  Assume that the motor parameters are somehow kept 

the same as in Problem 7-1 with the rated field current of 1.5 A.  As a 

function of speed, show the capability curve by plotting the torque and the 

field current fI , if the speed is increased up to twice its rated value. 

7-12 A wound-field dc motor is driving a load whose torque requirement 

increases linearly with speed and reaches 5 Nm at a speed of 1,400 rpm.  

The armature terminal voltage is held to its rated value.  At the rated fB , 

the no-load speed is 1,500 rpm and the speed while driving the load is 

1,400 rpm.  If fB  is reduced to 0.8 times its rated value, calculate the new 

steady state speed. 

 

ECM Drives 

 

7-13 In an ECM drive, 0.75E Tk k= =  in MKS units.  Plot the phase currents 

and the induced-emf waveforms, as a function of δ , if the motor is 

operating at a speed of 100 rad/s and delivering a torque of 6 Nm. 

7-14 By drawing waveforms similar to those in Figs. 7-23, 7-24b, and 7-24c, 

show how regenerative braking can be achieved in ECM drives. 
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CHAPTER  8 

 

DESIGNING FEEDBACK 
CONTROLLERS FOR 
MOTOR DRIVES  

 

 
8-1 INTRODUCTION 
 

Many applications, such as robotics and factory automation, require precise 

control of speed and position.  In such applications, a feedback control, as 

illustrated by Fig. 8-1, is used.  This feedback control system consists of a power-

processing unit (PPU), a motor, and a mechanical load.  The output variables such 

as torque and speed are sensed and are fed back to be compared with the desired 

(reference) values.  The error between the reference and the actual values are 

amplified to control the power-processing unit to minimize or eliminate this error.  

A properly designed feedback controller makes the system insensitive to 

disturbances and changes in the system parameters. 

 

The objective of this chapter is to discuss the design of motor-drive controllers.  

A dc-motor drive is used as an example, although the same design concepts can 

be applied in controlling brushless-dc motor drives and vector-controlled 

induction-motor drives.  In the following discussion, it is assumed that the power-

Fig 8-1 Feedback controlled drive. 
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processing unit is of a switch-mode type and has a very fast response time.  A 

permanent-magnet dc machine with a constant field flux fφ  is assumed. 

 

8-2 CONTROL OBJECTIVES 
 

The control system in Fig. 8-1 is shown simplified in Fig. 8-2, where ( )pG s  is the 

Laplace-domain transfer function of the plant consisting of the power-processing 

unit, the motor, and the mechanical load.  ( )cG s  is the controller transfer 

function.  In response to a desired (reference) input *( )X s , the output of the 

system is ( )X s , which (ideally) equals the reference input.  The controller ( )cG s  

is designed with the following objectives in mind: 

 

• a zero steady state error. 

• a good dynamic response (which implies both a fast transient response, for 

example to a step-change in the input, and a small settling time with very little 

overshoot). 

 

To keep the discussion simple, a unity feedback will be assumed.  The open-loop 

transfer function (including the forward path and the unity feedback path) ( )OLG s  

is 
 

 ( ) ( ) ( )OL c pG s G s G s=        (8-1) 

 

The closed-loop transfer function 
*

( )

( )

X s

X s
 in a unity feedback system is 

 

 
( )

( )
1 ( )

OL
CL

OL

G s
G s

G s
=

+
       (8-2) 

Fig 8-2 Simplified control system representation. 
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In order to define a few necessary control terms, we will consider a generic Bode 

plot of the open-loop transfer function ( )OLG s  in terms of its magnitude and 

phase angle, shown in Fig. 8-3a as a function of frequency.  The frequency at 

which the gain equals unity (that is ( ) 0OLG s db= ) is defined as the crossover 

frequency cf  (angular frequency cω ).  At the crossover frequency, the phase 

delay introduced by the open-loop transfer function must be less than 0180  in 

order for the closed-loop feedback system to be stable.  Therefore, at cf , the 

phase angle 
c

OL f
φ  of the open-loop transfer function, measured with respect to 

0180− , is defined as the Phase Margin (PM): 

 Phase Margin (PM) 0 0( 180 ) 180
c c

OL OLf f
φ φ= − − = +   (8-3) 

Note that 
c

OL f
φ  has a negative value.  For a satisfactory dynamic response 

without oscillations, the phase margin should be greater than 045 , preferably 

close to 060 . 
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The magnitude of the closed-loop transfer function is plotted in Fig. 8-3b 

(idealized by the asymptotes), in which the bandwidth is defined as the frequency 

at which the gain drops to (–3 dB).  As a first-order approximation in many 

practical systems,  

 

Closed-loop bandwidth ≈  cf       (8-4) 

 

For a fast transient response by the control system, for example a response to a 

step-change in the input, the bandwidth of the closed-loop should be high.  From 

Eq. 8-4, this requirement implies that the crossover frequency cf  (of the open-

loop transfer function shown in Fig. 8-3a) should be designed to be high. 
 

�  Example 8-1   In a unity feedback system, the open-loop transfer function is 

given as ( ) OL
OL

k
G s

s
= , where 32 10 /OLk rad s= × .  (a) Plot the open-loop transfer 

function.  What is the crossover frequency? (b) Plot the closed-loop transfer 

function and calculate the bandwidth.  (c) Calculate and plot the time-domain 

closed-loop response to a step-change in the input. 
 

Solution      

(a)  The open-loop transfer function is plotted in Fig. 8-4a, which shows that the 

crossover frequency 32 10 / sc OLk radω = = × . 
 

(b)  The closed-loop transfer function, from Eq. 8-2, is 
1

( )
1 /CL

OL

G s
s k

=
+

.  This 

closed-loop transfer function is plotted in Fig. 8-4b, which shows that the 
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Figure 8-4 (a) Gain magnitude of a first-order system open loop; (b) gain magnitude  
                  of a closed loop; (c) step response. 
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bandwidth is exactly equal to the cω  calculated in part a. 

(c)  For a step change, * 1
( )X s

s
= .  Therefore,  

 

 
1 1 1 1

( )
1 / 1 /OL OL

X s
s s k s s k

= = −
+ +

. 

 

The Laplace-inverse transform yields 

 

 /( ) (1 ) ( )tx t e u tτ−= −  where 
1

0.5
OL

ms
k

τ = = . 

 

The time response is plotted in Fig. 8-4c.  We can see that a higher value of OLk  

results in a higher bandwidth and a smaller time-constant τ , leading to a faster 

response.           �  

 

8-3 CASCADE CONTROL STRUCTURE 
 

In the following discussion, a cascade control structure such as that shown in Fig. 

8-5 is used.  The cascade control structure is commonly used for motor drives 

because of its flexibility.  It consists of distinct control loops; the innermost 

current (torque) loop is followed by the speed loop.  If position needs to be 

controlled accurately, the outermost position loop is superimposed on the speed 

loop.  Cascade control requires that the bandwidth (speed of response) increase 

towards the inner loop, with the torque loop being the fastest and the position 

loop being the slowest.  The cascade control structure is widely used in industry. 

Figure 8-5 Cascade control of a motor drive. 
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8-4 STEPS IN DESIGNING THE FEEDBACK CONTROLLER 
 

Motion control systems often must respond to large changes in the desired 

(reference) values of the torque, speed, and position.  They must reject large, 

unexpected load disturbances.  For large changes, the overall system is often 

nonlinear.  This nonlinearity comes about because the mechanical load is often 

highly nonlinear.  Additional nonlinearity is introduced by voltage and current 

limits imposed by the power-processing unit and the motor.  In view of the above, 

the following steps for designing the controller are suggested: 

 

1. The first step is to assume that, around the steady-state operating 

point, the input reference changes and the load disturbances are all 

small.  In such a small-signal analysis, the overall system can be 

assumed to be linear around the steady-state operating point, thus 

allowing the basic concepts of linear control theory to be applied. 

 

2. Based on the linear control theory, once the controller has been 

designed, the entire system can be simulated on a computer under 

large-signal conditions to evaluate the adequacy of the controller.  

The controller must be "adjusted" as appropriate. 

 

8-5 SYSTEM REPRESENTATION FOR SMALL-SIGNAL ANALYSIS 
 

For ease of the analysis described below, the system in Fig. 8-5 is assumed to be 

linear and the steady-state operating point is assumed to be zero for all of the 

system variables.  This linear analysis can be then extended to nonlinear systems 

and to steady-state operating conditions other than zero.  The control system in 

Fig. 8-5 is designed with the highest bandwidth (associated with the torque loop), 

which is one or two orders of magnitude smaller than the switching frequency sf .  

As a result, in designing the controller, the switching-frequency components in 

various quantities are of no consequence.  Therefore, we will use the average 

variables discussed in Chapter 4, where the switching-frequency components 

were eliminated. 
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The Average Representation of the Power-Processing Unit (PPU) 
 

For the purpose of designing the feedback controller, we will assume that the dc-

bus voltage dV  within the PPU shown in Fig. 8-6a is constant.  Following the 

averaging analysis in Chapter 4, the average representation of the switch-mode 

converter is shown in Fig. 8-6b.  In terms of the dc-bus voltage dV  and the 

triangular-frequency waveform peak t̂riV , the average output voltage ( )av t  of the 

converter is linearly proportional to the control voltage: 

 

 ( ) ( )a PWM cv t k v t=   (
ˆ

d
PWM

tri

V
k

V
= )    (8-5) 

( )av t

dV

1 ( )d t

( )ai t

ˆ
tri

1

V ( ) ( ) ( )A Bd t d t d t= −
( )cv t

−

+

−

+

ae

( )di t

−

+

A B
ae

A a

B a

i i

i i

=
= −

ai
Ai

Bi

( )Aq t

N

( )cv t

dV

dBidAi

di

−

+

−

++

−
av

( )Bq t

(a) 

(b) (c) 

( )cV s ( )aV s
PWMk

Figure 8-6 (a) Switch-mode converter for dc motor drives; (b) average model of  
the switch-mode converter; (c) linearized representation. 
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where PWMk  is the gain constant of the PWM converter.  Therefore, in Laplace 

domain, the PWM controller and the dc-dc switch-mode converter can be 

represented simply by a gain-constant PWMk , as shown in Fig. 8-6c: 

 

( ) ( )a PWM cV s k V s=        (8-6) 
 

where ( )aV s  is the Laplace transform of ( )av t , and ( )cV s  is the Laplace 

transform of ( )cv t .  The above representation is valid in the linear range, where 

ˆ ˆ
tri c triV v V− ≤ ≤ . 

 

8-5-2 The Modeling of the DC Machine and the Mechanical Load 
 

The dc motor and the mechanical load are modeled as shown by the equivalent 

circuit in Fig. 8-7a, in which the speed ( )m tω  and the back-emf ( )ae t  are assumed 

not to contain switching-frequency components.  The electrical and the 

mechanical equations corresponding to Fig. 8-7a are 

 

 ( ) ( ) ( ) ( )a a a a a a

d
v t e t R i t L i t

dt
= + + , ( ) ( )a mEe t k tω=   (8-7) 

and 

 
( )

( ) em L
m

eq

T t Td
t

dt J
ω −= ,  ( ) ( )em aTT k it t=    (8-8) 

Fig 8-7 DC motor and mechanical load (a) equivalent circuit; (b) block diagram. 
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where the equivalent load inertia ( )eq M LJ J J= +  is the sum of the motor inertia 

and the load inertia, and the damping is neglected (it could be combined with the 

load torque LT ).  In the simplified procedure presented here, the controller is 

designed to follow the changes in the torque, speed, and position reference values 

(and hence the load torque in Eq. 8-8 is assumed to be absent).  Eqs. 8-7 and 8-8 

can be expressed in the Laplace domain as 

 

 ( ) ( ) ( ) ( )a a a a aV s E s R sL I s= + +      (8-9) 

or 

 
( ) ( )

( ) a a
a

a a

V s E s
I s

R sL

−=
+

,  ( ) ( )a E mE s k sω=    (8-10) 

 

We can define the Electrical Time Constant eτ  as 

 a
e

a

L

R
τ =         (8-11) 

 

Therefore, Eq. 8-10 can be written in terms of eτ  as 

 

 
1/

( ) { ( ) ( )}
1

1/

a
a a a

e

R
I s V s E s

s

τ

= −
+

, ( ) ( )a E mE s k sω=   (8-12) 

 

From Eq. 8-8, assuming the load torque to be absent in the design procedure, 

 

 
( )

( ) em
m

eq

T s
s

sJ
ω = , ( ) ( )em T aT s k I s=     (8-13) 

 

Eqs. 8-10 and 8-13 can be combined and represented in block-diagram form, as 

shown in Fig. 8-7b.   
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8-6 CONTROLLER DESIGN 
 

The controller in the cascade control structure shown in Fig. 8-5 is designed with 

the objectives discussed in section 8-2 in mind.  In the following section, a 

simplified design procedure is described. 

 

8-6-1 PI Controllers 
 

Motion control systems often utilize a proportional-integral (PI) controller, as 

shown in Fig. 8-8.  The input to the controller is the error *( ) ( ) ( )E s X s X s= − , 

which is the difference between the reference input and the measured output.   

 

In Fig. 8-8, the proportional controller produces an output proportional to the 

error input: 

 

 , ( ) ( )c p pV s k E s=         (8-14) 

 

where pk  is the proportional-controller gain.  In torque and speed loops, 

proportional controllers, if used alone, result in a steady-state error in response to 

step-change in the input reference.  Therefore, they are used in combination with 

the integral controller described below. 

 

In the integral controller shown in Fig. 8-8, the output is proportional to the 

integral of the error ( )E s , expressed in the Laplace domain as 

 

−

( )X s

( )pG s
���������

( )cV s

+

, ( )c pV s

ik

s

pk

( )E s

*( )X s

( )cG s
�����������

, ( )c iV s +

+

Figure 8-8 PI controller. 
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 , ( ) ( )i
c i

k
V s E s

s
=         (8-15) 

 

where ik  is the integral-controller gain.  Such a controller responds slowly 

because its action is proportional to the time integral of the error.  The steady-

state error goes to zero for a step-change in input because the integrator action 

continues for as long as the error is not zero. 
 

In motion-control systems, the P controllers in the position loop and the PI 

controllers in the speed and torque loop are often adequate.  Therefore, we will 

not consider differential (D) controllers.  As shown in Fig. 8-8, 

, ,( ) ( ) ( )c c p c iV s V s V s= + .  Therefore, using Eqs. 8-14 and 8-15, the transfer 

function of a PI controller is 
 

 
( )

( ) [1 ]
( ) /

c i i
p

i p

V s k k s
k

E s s s k k
= + = +      (8-16) 

 

8-7   EXAMPLE OF A CONTROLLER DESIGN 
 

In the following discussion, we will consider the example of a permanent-magnet 

dc-motor supplied by a switch-mode PWM dc-dc converter.  The system 

parameters are given as follows in Table 8-1: 
 

Table 8-1 DC-Motor Drive System 
 

System Parameter Value 

aR  2.0Ω  

aL  5.2mH  

eqJ  6 2152 10 kg m−× ⋅  

B  0  

EK  0.1 /( / )V rad s  

Tk  0.1 /Nm A  

dV  60V  

t̂riV  5V  

sf  33kHz  
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We will design the torque, speed, and position feedback controllers (assuming a 

unity feedback) based on the small-signal analysis, in which the load nonlinearity 

and the effects of the limiters can be ignored. 

 

8-7-1     The Design of the Torque (Current) Control Loop 
 

As mentioned earlier, we will begin with the innermost loop in Fig. 8-9a (utilizing 

the transfer function block diagram of Fig. 8-7b to represent the motor-load 

combination, Fig. 8-6c to represent the PPU, and Fig. 8-8 to represent the PI 

controller).   

 

In permanent-magnet dc motors in which fφ  is constant, the current and the 

torque are proportional to each other, related by the torque constant Tk .  

Therefore, we will consider the current to be the control variable because it is 

more convenient to use.  Notice that there is a feedback in the current loop from 

Fig. 8-9 Design of the torque control loop. 
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1 sτ+
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mωemT( )aV s

+
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the output speed.  This feedback dictates the induced back-emf.  Neglecting LT , 

and considering the current to be the output, ( )aE s  can be calculated in terms of 

( )aI s  in Fig. 8-9a as ( ) ( )T E
a a

eq

k k
E s I s

sJ
= .  Therefore, Fig. 8-9a can be redrawn as 

shown in Fig. 8-9b.  Notice that the feedback term depends inversely on the 

inertia eqJ .  Assuming that the inertia is sufficiently large to justify neglecting the 

feedback effect, we can simplify the block diagram, as shown in Fig. 8-9c. 

 

The current-controller in Fig. 8-9c is a proportional-integral (PI) error amplifier 

with the proportional gain pIk  and the integral gain iIk .  Its transfer function is 

given by Eq. 8-16.  The subscript “I” refers to the current loop.  The open-loop 

transfer function , ( )I OLG s  of the simplified current loop in Fig. 8-9c is 

 
�

,

1/
( ) [1 ]

/ 1
1/

iI a
I OL PWM

iI pI PPU

PI controller e

motor

k Rs
G s k

ss k k
τ−

= +
+�������

�����

    (8-17) 

 

To select the gain constants of the PI controller in the current loop, a simple 

design procedure, which results in a phase margin of 90 degrees, is suggested as 

follows: 

 

• Select the zero ( / )iI pIk k  of the PI controller to cancel the motor pole at 

(1/ )eτ  due to the electrical time-constant eτ  of the motor.  Under these 

conditions, 

 

1iI

pI e

k

k τ
=  or pI e iIk kτ=      (8-18) 

 

Cancellation of the pole in the motor transfer function renders the open-loop 

transfer function to be 

 

 ,
, ( ) I OL

I OL

k
G s

s
=        (8-19a) 

where 
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 ,
iI PWM

I OL
a

k k
k

R
=                  (8-19b) 

 

• In the open-loop transfer function of Eq. 8-19a, the crossover frequency 

,cI I OLkω = .  We will select the crossover frequency ( / 2 )cI cIf ω π=  of the 

current open-loop to be approximately one to two orders of magnitude smaller 

than the switching frequency of the power-processing unit in order to avoid 

interference in the control loop from the switching-frequency noise.  

Therefore, at the selected crossover frequency, from Eq. 8-19b, 

 

 cI a
iI

PWM

R
k

k

ω=         (8-20) 

 

This completes the design of the torque (current) loop, as illustrated by the 

example below, where the gain constants pIk  and iIk  can be calculated from Eqs. 

8-18 and 8-20. 

 

�  Example 8-2   Design the current loop for the example system of Table 8-1, 

assuming that the crossover frequency is selected to be 1 kHz. 

 

Solution     From Eq. 8-20, for 32 10 /cI rad sω π= × , 

 

 1050.0cI a
iI

PWM

R
k

k

ω= =  

 

and, from Eq. 8-18, 

 

 2.73a
pI iI e iI

a

L
k k k

R
τ= = = . 

 

The open-loop transfer function is plotted in Fig. 8-10a, which shows that the 

crossover frequency is 1 kHz, as assumed previously.  The closed-loop transfer 

function is plotted in Fig. 8-10b.  

          �  
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8-7-2 The Design of the Speed Loop 
 

We will select the bandwidth of the speed loop to be one order of magnitude 

smaller than that of the current (torque) loop.  Therefore, the closed-current loop 

can be assumed to be ideal for design purposes and represented by unity, as 

shown in Fig. 8-11.  The speed controller is of the proportional-integral (PI) type.  

The resulting open-loop transfer function , ( )OLG sΩ  of the speed loop in the block 

diagram of Fig. 8-11 is as follows, where the subscript “ Ω ” refers to the speed 

loop: 

 

 
�

�

, ( ) [1 /( / )] 1i T
OL i p

current loop eq

PI controller torque inertia

k k
G s s k k

s sJ
Ω

Ω Ω Ω

+

= +
���������

   (8-21) 

 

Eq. 8-21 can be rearranged as 

(a) (b) 
Figure 8-10 Frequency response of the current loop (a) open loop; (b) closed loop. 
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Fig 8-11 Block diagram of the speed loop. 
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 , 2

1 /( / )
( ) ( ) i pi T

OL
eq

s k kk k
G s

J s
Ω ΩΩ

Ω

+
=      (8-22) 

 

This shows that the open-loop transfer function consists of a double pole at the 

origin.  At low frequencies in the Bode plot, this double pole at the origin causes 

the magnitude to decline at the rate of – 40 db per decade while the phase angle is 

at 0180− .  We can select the crossover frequency cω Ω  to be one order of 

magnitude smaller than that of the current loop.  Similarly, we can choose a 

reasonable value of the phase margin ,pmφ Ω .  Therefore, Eq. 8-22 yields two 

equations at the crossover frequency: 

 

 
2

1 /( / )
( ) 1

c

i pi T

eq s j

s k kk k

J s
ω Ω

Ω ΩΩ

=

+
=      (8-23) 

and 

 0
,2

1 /( / )
( ) 180

c

i pi T
pm

eq s j

s k kk k

J s
ω

φ
Ω

Ω ΩΩ
Ω

=

+
∠ = − +    (8-24) 

 

The two gain constants of the PI controller can be calculated by solving these two 

equations, as illustrated by the following example. 

 

�  Example 8-3   Design the speed loop controller, assuming the speed loop 

crossover frequency to be one order of magnitude smaller than that of the current 

loop in Example 8-2; that is, 100cf HzΩ = , and thus 628 / sc radω Ω = .  The phase 

margin is selected to be 060 . 

 

Solution     In Eqs. 8-23 and 8-24, substituting 0.1 /Tk Nm A= , 
6 2152 10eqJ kg m−= × ⋅ , and , 60o

PMφ Ω =  at the crossover frequency, where 

628cs j jω Ω= = , we can calculate that 0.827pk Ω =   and  299.7ik Ω = .  The open- 

and the closed-loop transfer functions are plotted in Figs. 8-12a and 8-12b.      �  
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8-7-3 The Design of the Position Control Loop 
 

We will select the bandwidth of the position loop to be one order of magnitude 

smaller than that of the speed loop.  Therefore, the speed loop can be idealized 

and represented by unity, as shown in Fig. 8-13.  For the position controller, it is 

adequate to have only a proportional gain pk θ  because of the presence of a true 

integrator 
1

s
 
  

 in Fig. 8-13 in the open-loop transfer function.  This integrator 

will reduce the steady state error to zero for a step-change in the reference 

position.  With this choice of the controller, and with the closed–loop response of 

the speed loop assumed to be ideal, the open-loop transfer function , ( )OLG sθ  is 

 

 , ( )OL

k
G s

s
θ

θ =         (8-25) 

 

Therefore, selecting the crossover frequency cθω  of the open-loop allows kθ to be 

calculated as 

1
1

s

( )m sω* ( )m sω* ( )m sθ ( )m sθ
kθ

−
+

Fig 8-13 Block diagram of position loop. 

(a) (b) 
Figure 8-12 Speed loop response (a) open loop; (b) closed loop. 
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 ckθ θω=         (8-26) 

 

�  Example 8-4   For the example system of Table 8-1, design the position-loop 

controller, assuming the position-loop crossover frequency to be one order of 

magnitude smaller than that of the speed loop in Example 8-3 (that is, 10cf Hzθ =  

and 62.8 / sc radθω = ). 

 

Solution     From Eq. 8-26, 62.8 / sck radθ θω= = .   

The open- and the closed-loop transfer functions are plotted in Figs. 8-14a and 8-

14b.          �  

 
8-8 THE ROLE OF FEED-FORWARD 
 

Although simple to design and implement, a cascaded control consisting of 

several inner loops is likely to respond to changes more slowly than a control 

system in which all of the system variables are processed and acted upon 

simultaneously.  In industrial systems, approximate reference values of inner-loop 

variables are often available.  Therefore, these reference values are fed forward, 

as shown in Fig. 8-15.  The feed-forward operation can minimize the 

disadvantage of the slow dynamic response of cascaded control. 
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Figure 8-14 Position loop response (a) open loop; (b) closed loop. 
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8-9 THE EFFECTS OF LIMITS 
 

As pointed out earlier, one of the benefits of cascade control is that the 

intermediate variables such as torque (current) and the control signal to the PWM-

IC can be limited to acceptable ranges by putting limits on their reference values.  

This provides safety of operation for the motor, for the power electronics 

converter within the power processor, and for the mechanical system as well. 

 

As an example, in the original cascade control system discussed earlier, limits can 

be placed on the torque (current) reference, which is the output of the speed PI 

controller, as seen in Fig. 8-15.  Similarly, as shown in Fig. 8-16a, a limit 

inherently exists on the control voltage (applied to the PWM-IC chip), which is 

the output of the torque/current PI controller.   

 

Similarly, a limit inherently exists on the output of the PPU, whose magnitude 

cannot exceed the input dc-bus voltage dV .  For a large change in reference or a 

large disturbance, the system may reach such limits.  This makes the system 

nonlinear and introduces further delay in the loop when the limits are reached.  

For example, a linear controller may demand a large motor current in order to 

meet a sudden load torque increase, but the current limit will cause the current 

loop to meet this increased load torque demand slower than is otherwise possible.  

This is the reason that after the controller is designed based on the assumptions of 

linearity, its performance in the presence of such limits should be thoroughly 

simulated. 
 

Figure 8-15 Control system with feedforward. 
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8-10 ANTI-WINDUP (NON-WINDUP) INTEGRATION 
 

In order for the system to maintain stability in the presence of limits, special 

attention should be paid to the controllers with integrators, such as the PI 

controller shown in Fig. 8-16b.  In the anti-windup integrator of Fig. 8-16b, if the 

controller output reaches its limit, then the integrator action is turned off by 

shorting the input of the integrator to ground, if the saturation increases in the 

same direction. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. What are the various blocks of a motor drive? 

2. What is a cascaded control and what are its advantages? 

3. Draw the average models of a PWM controller and a dc-dc converter. 

4. Draw the dc-motor equivalent circuit and its representation in Laplace 

domain.  Is this representation linear? 

5. What is the transfer function of a proportional-integral (PI) controller?  

6. Draw the block diagram of the torque loop. 

7. What is the rationale for neglecting the feedback from speed in the torque 

loop? 

Figure 8-16 (a) Limits on the PI controller; (b) PI with anti-windup. 
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8. Draw the simplified block diagram of the torque loop. 

9. Describe the procedure for designing the PI controller in the torque loop. 

10. How would we have designed the PI controller of the torque loop if the effect 

of the speed were not ignored? 

11. What allows us to approximate the closed torque loop by unity in the speed 

loop? 

12. What is the procedure for designing the PI controller in the speed loop? 

13. How would we have designed the PI controller in the speed loop if the closed 

torque-loop were not approximated by unity? 

14. Draw the position-loop block diagram. 

15. Why do we only need a P controller in the position loop? 

16. What allows us to approximate the closed speed loop by unity in the position 

loop? 

17. Describe the design procedure for determining the controller in the position 

loop. 

18. How would we have designed the position controller if the closed speed loop 

were not approximated by unity? 

19. Draw the block diagram with feed-forward. What are its advantages? 

20. Why are limiters used and what are their effects? 

21. What is the integrator windup and how can it be avoided? 
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PROBLEMS AND SIMULATIONS 
 

8-1 In a unity feedback system, the open-loop transfer function is of the form 

( )
1 /OL

p

k
G s

s ω
=

+
.  Calculate the bandwidth of the closed-loop transfer 

function.  How does the bandwidth depend on k  and pω ? 
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8-2 In a feedback system, the forward path has a transfer function of the form 

( ) /(1 / )pG s k s ω= + , and the feedback path has a gain of fbk  which is less 

than unity.  Calculate the bandwidth of the closed-loop transfer function.  

How does the bandwidth depend on fbk ? 

8-3 In designing the torque loop of Example 8-2, include the effect of the 

back-emf, shown in Fig. 8-9a.  Design a PI controller for the same open-

loop crossover frequency and for a phase margin of 60 degrees.  Compare 

your results with those in Example 8-2. 

8-4 In designing the speed loop of Example 8-3, include the torque loop by a 

first-order transfer function based on the design in Example 8-2.  Design a 

PI controller for the same open-loop crossover frequency and the same 

phase margin as in Example 8-3 and compare results.   

8-5 In designing the position loop of Example 8-4, include the speed loop by a 

first-order transfer function based on the design in Example 8-3.  Design a 

P-type controller for the same open-loop crossover frequency as in 

Example 8-4 and for a phase margin of 60 degrees.  Compare your results 

with those in Example 8-4. 

8-6 In an actual system in which there are limits on the voltage and current 

that can be supplied, why and how does the initial steady-state operating 

point make a difference for large-signal disturbances? 

8-7 Obtain the time response of the system designed in Example 8-3, in terms 

of the change in speed, for a step-change of the load-torque disturbance. 

8-8 Obtain the time response of the system designed in Example 8-4, in terms 

of the change in position, for a step-change of the load-torque disturbance. 

8-9 In the example system of Table 8-1, the maximum output voltage of the 

dc-dc converter is limited to 60 V.  Assume that the current is limited to 8 

A in magnitude.  How do these two limits impact the response of the 

system to a large step-change in the reference value? 

8-10 In Example 8-3, design the speed-loop controller, without the inner 

current loop, as shown in Fig. P8-10, for the same crossover frequency 

and phase margin as in Example 8-3.  Compare results with the system of 

Example 8-3. 

Figure P8-10 
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CHAPTER  9 
 

INTRODUCTION TO AC 
MACHINES AND SPACE 
VECTORS 
 
 
 

9-1 INTRODUCTION 

 

The market share of ac drives is growing at the expense of brush-type dc motor 

drives.  In ac drives, motors are primarily of two types: induction motors, which 

are the workhorses of the industry, and the sinusoidal-waveform, permanent-

magnet synchronous motors, which are mostly used for high performance 

applications in small power ratings.  The purpose of this chapter is to introduce 

the tools necessary to analyze the operation of these ac machines in later chapters. 

 

Generally, three-phase ac voltages and currents supply all of these machines.  The 

stators of the induction and the synchronous machines are similar and consist of 

3-phase windings.  However, the rotor construction makes the operation of these 

two machines different.  In the stator of these machines, each phase winding (a 

winding consists of a number of coils connected in series) produces a sinusoidal 

field distribution in the air gap.  The field distributions due to three phases are 

displaced by 120 degrees ( 2 / 3π  radians) in space with respect to each other, as 

indicated by their magnetic axes (defined in Chapter 6 for a concentrated coil) in 

the cross-section of Fig. 9-1 for a 2-pole machine, the simplest case.  In this 

chapter, we will learn to represent sinusoidal field distributions in the air gap with 

space vectors which will greatly simplify our analysis. 
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9-2 SINUSOIDALLY-DISTRIBUTED STATOR WINDINGS 

 

In the following description, we will assume a 2-pole machine (with p=2).  This 

analysis is later generalized to multi-pole machines by means of Example 9-2.   

 

In ac machines, windings for each phase ideally should produce a sinusoidally-

distributed, radial field (F, H, and B) in the air gap.  Theoretically, this requires a 

sinusoidally-distributed winding in each phase.  In practice, this is approximated 

in a variety of ways discussed in References [1] and [2].  To visualize this 

sinusoidal distribution, consider the winding for phase a, shown in Fig. 9-2a, 

where, in the slots, the number of turns-per-coil for phase-a progressively 

increases away from the magnetic axis, reaching a maximum at 090θ = .  Each 

coil, such as the coil with sides 1 and 1', spans 180 degrees where the current into 

coil-side 1 returns in 1' through the end-turn at the back of the machine.  This coil 

(1,1') is connected in series to coil-side 2 of the next coil (2,2'), and so on.  

Graphically, such a winding for phase-a can be drawn as shown in Fig. 9-2b, 

where bigger circles represent higher conductor densities, noting that all of the 

conductors in the winding are in series and hence carry the same current.  

 

Figure 9-1 Magnetic axes of the three phases in a 2-pole machine. 
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axisb −

axisc −
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In Fig. 9-2b, in phase a, the conductor density ( )sn θ , in terms of the number of 

conductors per radian angle, is a sinusoidal function of the angle θ , and can be 

expressed as 

 

 [ ]ˆ( ) sin . / 0s sn n no of conductors radθ θ θ π= < <   (9-1) 

 

where ˆsn  is the maximum conductor density, which occurs at 
2

πθ = .  If the phase 

winding has a total of sN  turns (that is, 2 sN  conductors), then each winding-half, 

from θ  = 0 to θ  = π , contains sN  conductors.  To determine ˆsn  in Eq. 9-1 in 

terms of sN , note that a differential angle dθ  at θ  in Fig. 9-2b contains 

( )sn dθ θ⋅  conductors.  Therefore, the integral of the conductor density in Fig. 9-

2b, from θ  = 0 to θ  = π , equals sN  conductors: 

1

2

34
5

6

7

1'

2 '

3 ' 4 ' 5 '

6 ' ai
θ

ai

7 '

(a) 

(b) 

 Figure 9-2 Sinusoidally-distributed winding for phase-a. 

dθ

θ
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magnetic axis
of phase a
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 ( )s so
n d N

π
θ θ =∫        (9-2) 

 

Substituting the expression for ( )sn θ  from Eq. 9-1, the integral in Eq. 9-2 yields 

 

 ˆ ˆ( ) sin 2s s so o
n d n d n

π π
θ θ θ θ= =∫ ∫      (9-3) 

 

Equating the right-sides of Eqs. 9-2 and 9-3,  

 

 ˆ
2

s
s

N
n =         (9-4) 

 

Substituting ˆsn  from Eq. 9-4 into Eq. 9-1 yields the sinusoidal conductor-density 

distribution in the phase-a winding as 

 

 ( ) sin
2

s
s

N
n θ θ=  0 θ π≤ ≤      (9-5) 

 
In a multi-pole machine (with 2p > ), the peak conductor density remains the 

same, / 2sN , as in Eq. 9-5 for a 2-pole machine.  (This is shown in Example 9-2 

and the homework problem 9-4.)   

 
Rather than restricting the conductor density expression to a region 0 θ π< < , we 

can interpret the negative of the conductor density in the region 2π θ π< <  in Eq. 

9-5 as being associated with carrying the current in the opposite direction, as 

indicated in Fig. 9-2b. 

 
In this discussion, we will consider only the magnetizing flux lines that 

completely cross the two air gaps.  That means that, at present, we will ignore the 

leakage flux lines.  To obtain the air gap field (mmf, flux density and the 

magnetic field intensity) distribution caused by the winding current, we will make 

use of the symmetry in Fig. 9-3.  The radially-oriented fields in the air gap at 

angles and ( )θ θ π+  are equal in magnitude but opposite in direction.  We will 
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assume the field direction away from the center of the machine to be positive.  

Therefore, the magnetic field-intensity in the air gap, established by the current ia 

(hence the subscript "a") at positions and ( )θ θ π+  will be equal in magnitude but 

of opposite sign: ( ) ( )a aH Hθ π θ+ = − .  To exploit this symmetry, we will apply 

Ampere’s Law to a closed path shown in Fig. 9-3 through angles θ  and ( )θ π+ .  

We will assume the magnetic permeability of the rotor and the stator iron to be 

infinite and hence the H-field in iron to be zero.  In terms of ( )aH θ , application 

of Ampere's Law along the closed path in Fig. 9-3, at any instant of time t, results 

in 

 

 
� 0
outward inward

( ) i ( )a g a g a sH H n d
π

θ ξ ξ− − = ⋅ + ⋅∫� �
�����

    (9-6) 

 

where g�  is the length of each air gap and a negative sign is associated with the 

integral in the inward direction because, while the path of integration is inward, 

the field intensity is measured outwardly. On the right side of Eq. 9-6, ( )sn dξ ξ⋅  

is the number of turns enclosed in the differential angle dξ  at angle ξ , as 

measured in Fig. 9-3.  In Eq. 9-6, integration from 0  to π  yields the total number 

of conductors enclosed by the chosen path, including the “negative” conductors 

Figure 9-3 Calculation of air gap field distribution. 

dξ
ξ

0θ =
µ =∞

θ π+

θ π=

θ
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that carry current in the opposite direction.  Substituting the conductor density 

expression from Eq. 9-5 into Eq. 9-6, 

 

 ( )
0

2 i ( ) i cos
2

s
a g a s a

N
H sin d N

π
θ θ ξ ξ θ= + ⋅ =∫�  

or 

 ( ) i cos
2

s
a a

g

N
H θ θ=

�
       (9-7) 

 

Using Eq. 9-7, the radial flux density ( )aB θ  and the mmf ( )aF θ  acting on the air 

gap at an angle θ  can be written as 
 

 ( )( ) ( ) i cos
2

o s
a o a a

g

N
B H

µθ µ θ θ= =
�

     (9-8) 

 ( ) ( ) i cos
2

s
a g a a

N
F Hθ θ θ= =�      (9-9) 

 

The co-sinusoidal field distributions in the air gap due to a positive value of ia  

stator surface

rotor surface

at time ' 't

θ

2

π− π
2

π

, , ( )a a aF H B θ

0 3

2

π 2π

, , ( )a a aF H B θ

θ

4t
3t

2t
1t

Figure 9-4 (a) Field distribution in the air gap; (b) with ia positive at 
t1 and t2, and negative at t3 and t4. 

(a) 

(b) 



 9-7 

(with the direction as defined in Figs. 9-2a and 9-2b), given by Eqs. 9-7 through 

9-9, are plotted in the developed view of Fig. 9-4a.  The angle θ  is measured in 

the counter-clockwise direction with respect to the phase-a magnetic axis.  The 

radial field distributions in the air gap peak along the phase-a magnetic axis, and 

at any instant of time, their amplitudes are linearly proportional to the value of ai  

at that time.  Fig. 9-4b shows field distributions in the air gap due to positive and 

negative values of ai  at various times.  Notice that regardless of the positive or the 

negative current in phase-a, the flux-density distribution produced by it in the air 

gap always has its peak (positive or negative) along the phase-a magnetic axis. 

 

�  Example 9-1   In the sinusoidally-distributed winding of phase-a, shown in 

Fig. 9-3, 100sN =  and the current 10ai A= .  The air gap length 1g mm=� .  

Calculate the ampere-turns enclosed and the corresponding F, H, and B fields for 

the following Ampere’s Law integration paths: (a) through θ  equal to 00  and 
0180  as shown in Fig. 9-5a and (b) through θ  equal to 090  and 0270  as shown in 

Fig. 9-5b. 

 

Solution 

 

(a) At 00θ = , from Eqs. 9-7 through 9-9, 

 

5

0
cos( ) 5 10 /

2
s

a a
g

N
H i A m

θ
θ

=
= = ×

�
, 

0θ =

θ

Figure 9-5 Paths corresponding to Example 9-1. 
(a) (b) 

0θ =

θ
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0 0
0.628a o aB H T

θ θµ
= =

= = , and 

0 0
500a g aF H A turns

θ θ= =
= = ⋅� . 

 

All the field quantities reach their maximum magnitude at 00θ =  and 0180θ = , 

because the path through them encloses all of the conductors that are carrying 

current in the same direction.  

 

(b) From Eqs. 9-7 through 9-9, at 090θ = , 

 

 0 0 090 90 90
cos( ) 0 / , 0, and 0

2
s

a a a a
g

N
H i A m B F

θ θ θθ
= = =

= = = =
�

. 

 

Half of the conductors enclosed by this path, as shown in Fig. 9-5b, carry current 

in a direction opposite that of the other half.  The net effect is the cancellation of 

all of the field quantities in the air gap at 90 and 270 degrees.  �  

 

We should note that there is a limited number of total slots along the stator 

periphery, and each phase is allotted only a fraction of the total slots.  In spite of 

these limitations, the field distribution can be made to approach a sinusoidal 

distribution in space, as in the ideal case discussed above.  Since machine design 

is not our objective, we will leave the details for the interested reader to 

investigate in References [1] and [2]. 

 

�  Example 9-2   Consider the phase-a winding for a 4-pole stator (p=4) as 

shown in Fig. 9-6a.  All of the conductors are in series.  Just like in a 2-pole 

machine, the conductor density is a sinusoidal function.  The total number of turns 

per-phase is sN .  Obtain the expressions for the conductor density and the field 

distribution, both as functions of position. 
 

Solution    We will define an electrical angle eθ  in terms of the actual 

(mechanical) angle θ : 
 

 
2e

pθ θ=      where 2 ( 4 )e p polesθ θ= =    (9-10) 
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Skipping a few steps (left as homework problem 9-4), we can show that, in terms 

of eθ , the conductor density in phase-a of a p-pole stator ideally should be 
 

 ( ) sin
2

s
s e e

N
n θ θ= .  ( 2p ≥ )    (9-11) 

 

To calculate the field distribution, we will apply Ampere’s Law along the path 

through eθ  and ( )eθ π+ , shown in Fig. 9-6a, and we will make use of symmetry.  

The procedure is similar to that used for a 2-pole machine (the intermediate steps 

are skipped here and left as homework problem 9-5).  The results for a multi-pole 

machine ( 2p ≥ ) are as follows: 
 

o0o360

eθ π+

eθ

Figure 9-6 Phase a of a 4-pole machine. 
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o45
o90
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o180

o90
o360o270
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 ( ) i coss
a e a e

g

N
H

p
θ θ=

�
      (9-12a) 

 

 ( )( ) ( ) i coso s
a e o a e a e

g

N
B H

p

µθ µ θ θ= =
�

               (9-12b) 

and 

 ( ) ( ) i coss
a e g a e a e

N
F H

p
θ θ θ= =� .     (9-12c) 

 

These distributions are plotted in Fig. 9-6b for a 4-pole machine.  Notice that one 

complete cycle of distribution spans 180 mechanical degrees; therefore, this 

distribution is repeated twice around the periphery in the air gap.  �  

 

9-2-1 Three-Phase, Sinusoidally-Distributed Stator Windings 
 

In the previous section, we focused only on phase-a, which has its magnetic axis 

along 00θ = .  There are two more identical sinusoidally-distributed windings for 

phases b and c, with magnetic axes along 0120θ =  and 0240θ = , respectively, as 

represented in Fig. 9-7a.  These three windings are generally connected in a wye-

arrangement by connecting terminals a′ , b′ , and c′  together, as shown in Fig. 9-

7b.  Field distributions in the air gap due to currents i and ib c  are identical in 

a
'a

b

'b

c

'c

ai

bi

ci

axisa −

axisb −

axisc −
o240∠

o120∠

o0∠

θ

Figure 9-7 Three-phase windings. 

b
bi

ai

ci
c

a

(a) (b) 
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shape to those in Figs. 9-4a and 9-4b, due to ai , but they peak along their 

respective phase-b and phase-c magnetic axes.   

 

By Kirchhoff's Current Law, in Fig. 9-7b, 

 

 ( ) ( ) ( ) 0a b ci t i t i t+ + =        (9-13) 

 

�  Example 9-3   At any instant of time t , the stator windings of the 2-pole 

machine shown in Fig. 9-7b have 10ai A= , 7bi A= − , and 3ci A= − .  The air gap 

length 1g mm=�  and each winding has 100sN =  turns.  Plot the flux density, as 

a function of θ , produced by each current, and the resultant flux density ( )sB θ  in 

the air gap due to the combined effect of the three stator currents at this time.  

Note that the subscript “s” (which refers to the stator) includes the effect of all 

three stator phases on the air gap field distribution. 

 

Solution     From Eq. 9-8, the peak flux density produced by any phase current i  

is 

 

 
7

3

4 10 100ˆ  0.0628 [ ]
2 2 1 10

o s

g

N
B i i i T

µ π −

−

× ×= = =
× ×�

. 

 

The flux-density distributions are plotted as functions of θ  in Fig. 9-8 for the 

given values of the three phase currents.  Note that aB  has its positive peak at 

0oθ = , bB  has its negative peak at 120oθ = , and cB  has its negative peak at 

240oθ = .  Applying the principle of superposition under the assumption of a 

linear magnetic circuit, adding together the flux-density distributions produced by 

each phase at every angle θ  yields the combined stator-produced flux density 

distribution ( )sB θ , plotted in Fig. 9-8.     �  
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9-3 THE USE OF SPACE VECTORS TO REPRESENT SINUSOIDAL 

FIELD DISTRIBUTIONS IN THE AIR GAP 
 

In linear ac circuits in a sinusoidal steady state, all voltages and currents vary 

sinusoidally with time.  These sinusoidally time-varying voltages and currents are 

represented by phasors V  and I  for ease of calculations.  These phasors are 

expressed by complex numbers, as discussed in Chapter 3. 

 

Similarly, in ac machines, at any instant of time t , sinusoidal space distributions 

of fields ( , , )B H F  in the air gap can be represented by space vectors.  At any 

instant of time t , in representing a field distribution in the air gap with a space 

vector, we should note the following: 

 

• The peak of the field distribution is represented by the amplitude of the 

space vector. 
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( )bB θ

( )cB θ

( )sB θ

θ
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θ

θ

Figure 9-8 Waveforms of flux density. 
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• Where the field distribution has its positive peak, the angle θ , measured 

with respect to the phase-a magnetic axis (by convention chosen as the 

reference axis), is represented by the orientation of the space vector.   

 

Similar to phasors, space vectors are expressed by complex numbers.  The space 

vectors are denoted by a " → " on top, and their time dependence is usually 

explicitly shown. 

 

Let us first consider phase-a.  In Fig. 9-9a, at any instant of time t , the mmf 

produced by the sinusoidally-distributed phase-a winding has a co-sinusoidal 

shape (distribution) in space; that is, this distribution always peaks along the 

phase-a magnetic axis, and elsewhere it varies with the cosine of the angle θ  

away from the magnetic axis.  The amplitude of this co-sinusoidal spatial 

distribution depends on the phase current ai , which varies with time.  Therefore, 

as shown in Fig. 9-9a, at any time t, the mmf distribution due to ai  can be 

represented by a space vector ( )aF t
���

: 

 

 0( ) i ( ) 0
2

s
a a

N
F t t= ∠
���

       (9-14) 

 

The amplitude of ( )aF t
���

 is ( / 2)sN  times i ( )a t , and ( )aF t
���

 is always oriented 

along the phase-a magnetic axis at the angle of 00 .  The phase-a magnetic axis is 

always used as the reference axis.  A representation similar to the mmf 

distribution can be used for the flux-density distribution. 

 

In a similar manner, at any time t, the mmf distributions produced by the other 

two phase windings can also be represented by space vectors oriented along their 

respective magnetic axes at 0120  and 0240 , as shown in Fig. 9-9a for negative 

values of bi  and ci .  In general, at any instant of time, we have the following three 

space vectors representing the respective mmf distributions: 
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( )

( )

( )

0

0

0

( ) i 0
2

( ) i 120
2

( ) i 240
2

s
a a

s
b b

s
c c

N
F t t

N
F t t

N
F t t

= ∠

= ∠

= ∠

���

���

���

      (9-15) 

 

Note that the sinusoidal distribution of mmf in the air gap at any time t is a 

consequence of the sinusoidally distributed windings.  As shown in Fig. 9-9a for a 

positive value of ia and negative values of ib and ic (such that 0a b ci i i+ + = ), each 

of these vectors is pointed along its corresponding magnetic axis, with its 

amplitude depending on the winding current at that time.  Due to the three stator 

(a)
(b)

Figure 9-9 Representation of MMF space vector in a machine.
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Figure 9-9 Representation of MMF space vector in a machine.
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currents, the resultant stator mmf distribution is represented by a resultant space 

vector which is obtained by vector addition in Fig. 9-9b: 

 

ˆ( ) ( ) ( ) ( )
ss a b c s FF t F t F t F t F θ= + + = ∠

��� ��� ��� ���
     (9-16a) 

 

where ŝF  is the space vector amplitude and 
sFθ  is the orientation (with the a-axis 

as the reference).  The space vector ( )sF t
���

 represents the mmf distribution in the 

air gap at this time t due to all three phase currents; ŝF  represents the peak 

amplitude of this distribution and 
sFθ  is the angular position at which the positive 

peak of the distribution is located.  The subscript “s” refers to the combined mmf 

due to all three phases of the stator.  The space vector sF
���

 at this time in Fig. 9-9b 

represents the mmf distribution in the air gap, which is plotted in Fig. 9-9c. 
 

Expressions similar to ( )sF t
���

 in Eq. 9-16a can be derived for the space vectors 

representing the combined-stator flux-density and the field-intensity distributions: 
 

 ˆ( ) ( ) ( ) ( )
ss a b c s BB t B t B t B t B θ= + + = ∠

��� ��� ��� ���
              (9-16b) 

and 

 ˆ( ) ( ) ( ) ( )
ss a b c s HH t H t H t H t H θ= + + = ∠

��� ���� ���� ����
    (9-16c) 

 

How are these three field distributions, represented by space vectors defined in 

Eqs. 9-16a through 9-16c, related to each other?  This question is answered by 

Eqs. 9-21a and 9-21b in section 9-4-1. 
 

�  Example 9-4   In a 2-pole, three-phase machine, each of the sinusoidally-

distributed windings has 100sN =  turns.  The air gap length 1.5g mm=� .  At a 

time t, 10ai A= , 10bi A= − , and 0ci A= .  Using space vectors, calculate and plot 

the resultant flux density distribution in the air gap at this time. 
 

Solution     From Eqs. 9-15 and 9-16, noting that mathematically 
01 0 cos sinjθ θ∠ = + , 
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( )
{ }

0 0 0

0 0 0 0

( ) 0 120 240
2

50 10 ( 10)(cos120 sin120 ) (0)(cos 240 sin 240 )

50 17.32 30 866 30 .

s
s a b c

o o

N
F t i i i

j j

A turns

= ∠ + ∠ + ∠

= × + − + + +

= × ∠ − = ∠ − ⋅

���

 

 

From Eqs. 9-8 and 9-9, ( )0( ) / ( )a g aB Fθ µ θ= � .  The same relationship applies to 

the field quantities due to all three stator phase currents being applied 

simultaneously; that is, ( )0( ) / ( )s g sB Fθ µ θ= � .  Therefore, at any instant of time 

t ,  

 

 
7

0 00
3

4 10
( ) ( ) 866 30 0.73 30

1.5 10s s
g

B t F t T
µ π −

−

×= = ∠ − = ∠ −
×

��� ���

�
. 

 

This space vector is drawn in Fig. 9-10a.  The flux density distribution has a peak 

value of 0.73 T and the positive peak is located at 030θ = − , as shown in Fig. 9-

10b.  Elsewhere, the radial flux density in the air gap, due to the combined action 

of all three phase currents, is cosinusoidally distributed.   �  

 

 

9-4 SPACE-VECTOR REPRESENTATION OF COMBINED 
TERMINAL CURRENTS AND VOLTAGES 

 

At any time t, we can measure the phase quantities, such as the voltage ( )av t  and 

the current ( )ai t , at the terminals.  Since there is no easy way to show that phase 

(a) (b) 

o30

sB
���

phase-  magnetic axisa

at t

o30− θ

0θ =

( )sB θ at t
− .0 73 T

 Figure 9-10 (a) Resultant flux-density space vector; (b) flux-density distribution. 



 9-17 

currents and voltages are distributed in space at any given time, we will NOT 

assign space vectors to physically represent these phase quantities.  Rather, at any 

instant of time t, we will define space vectors to mathematically represent the 

combination of phase voltages and phase currents.  These space vectors are 

defined to be the sum of their phase components (at that time) multiplied by their 

respective phase-axis orientations.  Therefore, at any instant of time t, the stator 

current and the stator voltage space vectors are defined, in terms of their phase 

components (shown in Fig. 9-11a), as 

 
0 0 0 ˆ( ) ( ) 0 ( ) 120 ( ) 240 ( ) ( )

ss a b c s ii t i t i t i t I t tθ= ∠ + ∠ + ∠ = ∠
��

  (9-17) 

and 
0 0 0 ˆ( ) ( ) 0 ( ) 120 ( ) 240 ( ) ( )

ss a b c s vv t v t v t v t V t tθ= ∠ + ∠ + ∠ = ∠
��

  (9-18) 

 

where the subscript “s” refers to the combined quantities of the stator.  We will 

see later on that this mathematical description is of immense help in 

understanding the operation and control of ac machines. 

Figure 9-11 (a) Phase voltages and currents; (b) physical interpretation of stator  
                     current space vector. 

(a) (b) 

a'a

b

'b

c

'c

ai

bi

ci

axisa −

axisb −

axisc −
o240∠

o120∠

o0∠

ŝI

at time t

magnetic axis of the
equivalent winding

ˆwith current sI

axisa −

si
θ

av

bv

cv

+

+

+

si
��
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9-4-1 Physical Interpretation of the Stator Current Space Vector ( )si t
��

 

 

The stator current space vector ( )si t
��

 can be easily related to the stator mmf space 

vector sF
���

.  Multiplying both sides of Eq. 9-17 by ( / 2)sN  gives 
 

0 0 0

( ) ( ) ( )

( ) ( ) 0 ( ) 120 ( ) 240
2 2 2 2

a b c

s s s s
s a b c

F t F t F t

N N N N
i t i t i t i t= ∠ + ∠ + ∠

��� ��� ���

��

����� ������� �������
  (9-19a) 

 

Using Eq. 9-16, the sum of the mmf space vectors for the three phases is the 

resultant stator space vector.  Therefore, 

 

 ( ) ( )
2

s
s s

N
i t F t=
�� ���

                 (9-19b) 

Thus, 

( )
( )

( / 2)
s

s
s

F t
i t

N
=

���
��

 where  
ˆ ( )ˆ ( )

( / 2)
s

s
s

F t
I t

N
=   and  ( ) ( )

s si Ft tθ θ=  (9-20) 

 

Eq. 9-20 shows that the vectors ( )si t
��

 and ( )sF t
���

 are related only by a scalar 

constant ( / 2)sN .  Therefore, they have the same orientation and their amplitudes 

are related by ( / 2)sN .  At any instant of time t , Eq. 9-20 has the following 

interpretation: 
 

The combined mmf distribution in the air gap produced by ai , bi , and ci  

flowing through their respective sinusoidally-distributed phase windings 

(each with sN  turns) is the same as that produced in Fig. 9-11b by a 

current ŝI  flowing through an equivalent sinusoidally-distributed stator 

winding with its axis oriented at ( )
si

tθ .  This equivalent winding also has 

sN  turns.   
 

As we will see later on, the above interpretation is very useful – it allows us to 

obtain, at any instant of time, the combined torque acting on all three phase 
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windings by calculating the torque acting on this single equivalent winding with a 

current ŝI . 

 

Next, we will use ( )si t
��

 to relate the field quantities produced due to the combined 

effects of the three stator phase winding currents.  Eqs. 9-7 through 9-9 show that 

the field distributions aH , aB , and aF , produced by ai  flowing through the 

phase-a winding, are related by scalar constants.  This will also be true for the 

combined fields in the air gap caused by the simultaneous flow of ai , bi , and ci , 

since the magnetic circuit is assumed to be unsaturated and the principle of 

superposition applies.  Therefore, we can write expressions for ( )sB t
���

 and ( )sH t
���

 

in terms of ( )si t
��

 which are similar to Eq. 9-19b for ( )sF t
���

 (which is repeated 

below), 

 

 

( ) ( )
2

( ) ( )
2

( ) ( )
2

s
s s

s
s s

g

o s
s s

g

N
F t i t

N
H t i t

N
B t i t

µ

=

=

=

��� ��

��� ��

�

��� ��

�

 (rotor-circuit electrically open-circuited) (9-21a) 

 

The relationships in Eq. 9-21a show that these stator space vectors (with the rotor 

circuit electrically open-circuited) are collinear (that is, they point in the same 

direction) at any instant of time.  Eq. 9-21 also yields the relationship between the 

peak values as 

 

 

ˆ ˆ
2

ˆ ˆ
2

ˆ ˆ
2

s
s s

s
s s

g

o s
s s

g

N
F I

N
H I

N
B I

µ

=

=

=

�

�

  (rotor-circuit electrically open-circuited)      (9-21b) 
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�  Example 9-5   For the conditions in an ac machine in Example 9-4 at a given 

time t, calculate ( )si t
��

.  Show the equivalent winding and the current necessary to 

produce the same mmf distribution as the three phase windings combined.   
 

Solution     In Example 9-4, 10ai A= , 10bi A= − , and 0ci A= .  Therefore, from 

Eq. 9-17, 

 
0 0 0 0 0 00 120 240 10 ( 10) 120 (0) 240 17.32 30s a b ci i i i A= ∠ + ∠ + ∠ = + − ∠ + ∠ = ∠ −

��
. 

 

The space vector si
��

 is shown in Fig. 9-12a.   

 

Since the si
��

 vector is oriented at 30oθ = −  with respect to the phase-a magnetic 

axis, the equivalent sinusoidally-distributed stator winding has its magnetic axis 

at an angle of 30o−  with respect to the phase-a winding, as shown in Fig. 9-12b.  

The current required in the equivalent stator winding to produce the equivalent 

mmf distribution is the peak current ˆ 17.32sI A= .     �  

 

9-4-2 Phase Components of Space Vectors ( )si t
��

and ( )sv t
��

 

 

If the three stator windings in Fig. 9-13a are connected in a wye arrangement, the 

sum of their currents is zero at any instant of time t  by Kirchhoff’s Current Law: 

( ) ( ) ( ) 0a b ci t i t i t+ + = .  Therefore, as shown in Fig. 9-13b, at any time t, a space 

Figure 9-12 (a) Stator current space vector;  (b) the equivalent winding. 

(b) 

phase a
magnetic axis

ˆ .sI 17 32 A=

equivalent
winding

o30

(a) 

o30

si
��

sB
���

phase a
magnetic axis

phase b

phase c

magnetic axis

magnetic axis
magnetic axis
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vector is constructed from a unique set of phase components, which can be 

obtained by multiplying the projection of the space vector along the three axes by 

2/3.  (We should note that if the phase currents were not required to add up to 

zero, there would be an infinite number of phase component combinations.)   

 

This graphical procedure is based on the mathematical derivations described 

below.  First, let us consider the relationship 

 

 1 cos sinje jθθ θ θ∠ = = +       (9-22) 

 

The real part in the above equation is 

 

 Re(1 ) cosθ θ∠ =        (9-23) 

 

Therefore, mathematically, we can obtain the phase components of a space vector 

such as ( )si t
��

 as follows:  multiply both sides of the ( )si t
�

 expression in Eq. 9-17 

by 1 00∠ , 1 0120∠ − , and 1 0240∠ − , respectively.  Equate the real parts on both 

sides and use the condition that ( ) ( ) ( ) 0a b ci t i t i t+ + = . 

 

To obtain ai : 

(b) 

Figure 9-13 Phase components of a space vector. 
(a) 

a'a

b

'b

c

'c

ai

bi

ci

axisa −

axisb −

axisc −
o240∠

o120∠

o0∠
�����si

θ ���

( )si t
��

( )b
2

projection i t
3

× =

axisa −

axisb −

axisc −

( )a
2

projection i t
3

× =

( )c
2

projection i t
3

× =
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0 0 0

1 1

2 2

0

3
Re[ 0 ] Re[ 120 ] Re[ 240 ]

2

2 2 2ˆ ˆRe[ 0 ] Re[ ] cos
3 3 3

b c

s s

s a b c a

i i

a s s i s i

i i i i i

i i I Iθ θ

− −

∠ = + ∠ + ∠ =

∴ = ∠ = ∠ =

��

����� �������

��

   (9-24a) 

To obtain bi : 

0 0 0

1 1

2 2

0

3
Re[ 120 ] Re[ 120 ] Re[ 120 ]

2

2 2 2ˆ ˆRe[ 120 ] Re[ ( 120 )] cos( 120 )
3 3 3

a c

s s

s a b c b

i i

o o
b s s i s i

i i i i i

i i I Iθ θ

− −

∠ − = ∠ − + + ∠ =

∴ = ∠ − = ∠ − = −

��

������� �����

��

    (9-24b) 

To obtain ci : 

0 0 0

1 1

2 2

0

3
Re[ 240 ] Re[ 240 ] Re[ 120 ]

2

2 2 2ˆ ˆRe[ 240 ] Re[ ( 240 )] cos( 240 )
3 3 3

a b

s s

s a b c c

i i

o o
c s s i s i

i i i i i

i i I Iθ θ

− −

∠ − = ∠ − + ∠ − + =

∴ = ∠ − = ∠ − = −

��

������� �������

��

 (9-24c) 

 

Since ( ) ( ) ( ) 0a b ci t i t i t+ + = , it can be shown that the same uniqueness applies to 

components of all space vectors such as ( )sv t
��

, ( )sB t
���

, and so on for both the stator 

and the rotor. 

 

�  Example 9-6   In an ac machine at a given time, the stator voltage space vector 

is given as 0254.56 30sv V= ∠
��

.  Calculate the phase voltage components at this 

time. 

 

Solution     From Eq. 9-24, 

 

{ } { }0 02 2 2
Re 0 Re 254.56 30 254.56cos30 146.97 

3 3 3a sv v V= ∠ = ∠ = × ° =
��

, 

{ } { } ( )0 02 2 2
Re 120 Re 254.56 90 254.56cos 90 0 

3 3 3b sv v V= ∠ − = ∠ − = × − ° =
��

, and 

{ } { } ( )0 02 2 2
Re 240 Re 254.56 210 254.56cos 210 146.97 

3 3 3c sv v V= ∠ − = ∠ − = × − ° = −
��

.          �  
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9-5 BALANCED SINUSOIDAL STEADY-STATE EXCITATION 
(ROTOR OPEN-CIRCUITED) 

 

So far, our discussion has been in very general terms where voltages and currents 

are not restricted to any specific form.  However, we are mainly interested in the 

normal mode of operation, that is, balanced three-phase, sinusoidal steady state 

conditions.  Therefore, we will assume that a balanced set of sinusoidal voltages 

at a frequency ( )
2

f
ω
π

=  in steady state is applied to the stator, with the rotor 

assumed to be open-circuited.  We will initially neglect the stator winding 

resistances sR  and the leakage inductances sL� .  

 

In steady state, applying voltages to the windings in Fig. 9-14a (under rotor open-

circuit condition) results in magnetizing currents.  These magnetizing currents are 

(c) 

(b) (a) 

Figure 9-14 (a) Windings; b) magnetizing currents; (c) rotating mmf space vector. 

b
mbi

mai

mci
c

a 0
tω

ˆ
mI

t 0ω =

( )mbi t ( )mci t( )mai t

@
2

t
3

πω =
@ t

3

πω =

@
5

t
3

πω =

@ tω π= @ t 0ω =

@
4

t
3

πω =

phase-a magnetic axis

msF
�����

msF
�����

msF
�����

msF
�����

msF
�����

msF
�����
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indicated by adding “m” to the subscripts in the following equation, and are 

plotted in Fig. 9-14b 

 

( ) ( )ˆ ˆ ˆcos , cos 2 / 3 , and cos 4 / 3ma m mb m mc mi I t i I t i I tω ω π ω π= = − = −  (9-25) 

 

where m̂I  is the peak value of the magnetizing currents and the time origin is 

chosen to be at the positive peak of ( )mai t . 

 

9-5-1 Rotating Stator MMF Space Vector 
 

Substituting into Eq. 9-17 the expressions in Eq. 9-25 for the magnetizing 

currents varying sinusoidally with time, the stator magnetizing current space 

vector is 

 
0 0 0ˆ( ) cos 0 cos( 2 / 3) 120 cos( 4 / 3) 240ms mi t I t t tω ω π ω π = ∠ + − ∠ + − ∠ 

���
 (9-26) 

 

The expression within the square bracket in Eq. 9-26 simplifies to 
3

2
tω∠  (see 

homework problem 9-8) and Eq. 9-26 becomes 

 

�

ˆ

3 ˆ ˆ( )
2

ms

ms m ms

I

i t I t I tω ω= ∠ = ∠
���

 where  
3ˆ ˆ
2ms mI I=    (9-27) 

 

From Eq. 9-21a, 

 

ˆ( ) ( )
2

s
ms ms ms

N
F t i t F tω= = ∠
���� ���

 where  
3ˆ ˆ ˆ

2 2 2
s s

ms ms m

N N
F I I= =  (9-28) 

 

Similarly, using Eq. 9-21a again, 

 

( ) ( ) ( )
2

o s
ms ms

g

N
B t i t

µ=
���� ���

�
 where 

3ˆ ˆ ˆ( ) ( )
2 2 2

o s o s
ms ms m

g g

N N
B I I

µ µ= =
� �

 (9-29) 
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Note that if the peak flux density ˆ
msB  in the air gap is to be at its rated value in 

Eq. 9-29, then the m̂sI  and hence the peak value of the magnetizing current m̂I  in 

each phase must also be at their rated values. 

 

Under sinusoidal steady-state conditions, the stator-current, the stator-mmf, and 

the air gap flux-density space vectors have constant amplitudes ( m̂sI , ˆ
msF , and 

ˆ
msB ).  As shown by ( )msF t

����
 in Fig. 9-14c, all of these space vectors rotate with 

time at a constant speed, called the synchronous speed synω , in the counter-

clockwise direction, which in a 2-pole machine is equal to the frequency 

( 2 )fω π=  of the voltages and currents applied to the stator: 

 

( 2)syn pω ω= =        (9-30) 

 

�  Example 9-7   With the rotor electrically open-circuited in a 2-pole ac 

machine, voltages are applied to the stator, and result in the magnetizing currents 

plotted in Fig. 9-15a.  Sketch the direction of the flux lines at the instants 

0 ,60 ,120 ,180 ,240 , and 300o o o o o otω = .  Show that one electrical cycle results in 

the rotation of the flux orientation by one revolution, in accordance with Eq. 9-30 

for a 2-pole machine. 

 

Solution     At 0tω = , ˆ
ma mi I=  and ˆ(1/ 2)mb mc mi i I= = − .  The current directions 

for the three windings are indicated in Fig. 9-15b, where the circles for phase-a 

are shown larger due to twice as much current in them compared to the other two 

phases.  The resulting flux orientation is shown as well.  A Similar procedure is 

followed at other instants, as shown in Figs. 9-15c through 9-15g.  These 

drawings clearly show that in a 2-pole machine, the electrical excitation through 

one cycle of the electrical frequency ( / 2 )f ω π=  results in the rotation of the flux 

orientation, and hence of the space vector msB
����

, by one revolution in space.  

Therefore, synω ω= , as expressed in Eq. 9-30.    �  
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Figure 9-15 Example 9-7. 
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9-5-2 Rotating Stator MMF Space Vector in Multi-Pole Machines 
 

In the previous section, we considered a 2-pole machine.  In general, in a p-pole 

machine, a balanced sinusoidal steady state, with currents and voltages at a 

frequency ( )
2

f
ω
π

= , results in an mmf space vector that rotates at a speed  

 

 
/ 2syn p

ωω =   (
2

p =  pole-pairs)    (9-31) 

 

This can be illustrated by considering a p-pole machine and repeating the 

procedure outlined in Example 9-7 for a 2-pole machine (this is left as homework 

problem 9-11). 
 

In the space vectors for multi-pole machines, the three magnetic axes can be 

drawn as in a 2-pole machine (similar to the space vector diagrams of Fig. 9-9b or 

9-13b, for example), except now the axes are separated by 120 degrees 

(electrical), where the electrical angles are defined by Eq. 9-10.  Therefore, one 

complete cycle of electrical excitation causes the space vector, at the synchronous 

speed given in Eq. 9-31, to rotate by 360 degrees (electrical); that is, in the space 

vector diagram, the space vector returns to the position that it started from.  This 

corresponds to a rotation by an angle of 360/(p/2) mechanical degrees, which is 

exactly what happens within the machine.  However, in general (special situations 

will be pointed out), since no additional insight is gained by this multi-pole 

representation, it is best to analyze a multi-pole machine as if it were a 2-pole 

machine. 
 

9-5-3 The Relationship between Space Vectors and Phasors in Balanced 

Three-Phase Sinusoidal Steady State (
0

s a
t

v V
=

⇔
��

 and 
0

ms ma
t

i I
=

⇔
���

) 

 

In Fig. 9-14b, note that at 0tω = , the magnetizing current mai  in phase-a is at its 

positive peak.  Corresponding to this time 0tω = , the space vectors msi
���

, msF
����

, and 

msB
����

 are along the a-axis in Fig. 9-14c.  Similarly, at 02 / 3 or 120t radω π= , mbi  

in phase-b reaches its positive peak.  Correspondingly, the space vectors msi
���

, msF
����

, 

and msB
����

 are along the b-axis, 0120  ahead of the a-axis.  Therefore, we can 
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conclude that under a balanced three-phase sinusoidal steady state, when a phase 

voltage (or a phase current) is at its positive peak, the combined stator voltage (or 

current) space vector will be oriented along that phase axis.  This can also be 

stated as follows: when a combined stator voltage (or current) space vector is 

oriented along the magnetic axis of any phase, at that time, that phase voltage (or 

current) is at its positive peak value. 

 

We will make use of the information in the above paragraph.  Under a balanced 

three-phase sinusoidal steady state, let us arbitrarily choose some time as the 

origin 0t =  in Fig. 9-16a such that the current mai  reaches its positive peak at a 

later time tω α= .  The phase-a current can be expressed as 

 

 ˆ( ) cos( )ma mi t I tω α= −        (9-32) 

 

which is represented by a phasor below and shown in the phasor diagram of Fig. 

9-16b: 

 

 ˆ
ma mI I α= ∠ −         (9-33a) 

 

(a) 

(b) (c) 

Figure 9-16 Relationship between space vectors and phasors 
                    in balanced sinusoidal steady state. 

α

tω0
tω

ˆ
mI

t 0ω =

( )mbi t ( )mci t( )mai t

Re axis

ˆ
ma mI I α= ∠ −

α
axisa −

ˆ
ms msi I α= ∠ −
����

@ t 0=

α

synω ω=
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The phase-a current ( )mai t  reaches its positive peak at tω α= .  Therefore, at time 

0t = , the msi
���

 space vector will be as shown in Fig. 9-16c, behind the magnetic 

axis of phase-a by an angle α , so that it will be along the a-axis at a later time 

tω α= , when mai  reaches its positive peak.  Therefore, at time 0t = , 

 

 
0

ˆ
ms ms

t
i I α

=
= ∠ −

���
  where 

3ˆ ˆ
2ms mI I=                (9-33b) 

 

Combining Eqs. 9-33a and 9-33b,  

 

 
0

3

2ms ma
t

i I
=

=
���

        (9-34) 

 

where the left side mathematically represents the combined current space vector 

at time 0t =  and in the right side maI  is the phase-a current phasor representation.  

In sinusoidal steady state, Eq. 9-34 illustrates an important relationship between 

space vectors and phasors which we will use very often: 

 

1. The orientation of the phase-a voltage (or current) phasor is the same as 

the orientation of the combined stator voltage (or current) space vector at 

time 0t = . 

 

2. The amplitude of the combined stator voltage (or current) space vector is 

larger than that of the phasor amplitude by a factor of 3 / 2 .   

 

Note that knowing the phasors for phase-a is sufficient, as the other phase 

quantities are displaced by 120 degrees with respect to each other and have equal 

magnitudes.  This concept will be used in the following section. 
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9-5-4 Induced Voltages in Stator Windings 
 

In the following discussion, we will ignore the resistance and the leakage 

inductance of the stator windings, shown wye-connected in Fig. 9-17a.  

Neglecting all losses, under the condition that there is no electrical circuit or 

excitation in the rotor, the stator windings appear purely inductive.  Therefore, in 

each phase, the phase voltage and the magnetizing current are related as 

 

 ma
ma m

di
e L

dt
= ,    mb

mb m

di
e L

dt
= ,     and     mc

mc m

di
e L

dt
=   (9-35) 

 

(a) (b) 

(c) (d) 

Figure 9-17 Winding current and induced emf (a) individual windings; (b) phasors;  
                    (c) per-phase equivalent circuit; (d) space vectors. 
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where mL  is the magnetizing inductance of the three-phase stator, which in terms 

of the machine parameters can be calculated as (see homework problems 9-13 and 

9-14) 

 

 
2

3

2 2
o s

m
g

r N
L

πµ  =      

�

�
      (9-36) 

 

where r  is the radius, �  is the rotor length, and g�  is the air gap length.  The 

combination of quantities within the square bracket is the single-phase self-

inductance ,1m phaseL −  of each of the stator phase windings in a 2-pole machine: 

 

 
2

,1 2
o s

m phase
g

r N
L

πµ
−

 =   
�

�
      (9-37) 

 

Due to mutual coupling between the three phases, mL  given in Eq. 9-36 is larger 

than ,1m phaseL −  by a factor of 3/2: 

 

,1

3

2m m phaseL L −=        (9-38) 

 

Under a balanced sinusoidal steady state, assuming that mai  peaks at 90otω = , we 

can draw the three-phase phasor diagram shown in Fig. 9-17b, where 
 

 ( )ma m maE j L Iω=        (9-39) 
 

The phasor-domain circuit diagram for phase-a is shown in Fig. 9-17c and the 

corresponding combined space vector diagram for mse
���

 and msi
���

 at 0t =  is shown 

in Fig. 9-17d.  In general, at any time t , 

 

 ( ) ( ) ( )ms m mse t j L i tω=
��� ���

 where 
3ˆ ˆ ˆ( ) ( )
2ms m ms m mE L I L Iω ω= =   (9-40) 
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In Eq. 9-40, substituting for ( )msi t
���

 in terms of ( )msB t
����

 from Eq. 9-21a and 

substituting for mL  from Eq. 9-36, 

 

 
3

( ) ( ) ( )
2 2

s
ms ms

N
e t j r B tω π=
��� ����

�       (9-41) 

 

Eq. 9-41 shows an important relationship: the induced voltages in the stator 

windings can be interpreted as back-emfs induced by the rotating flux-density 

distribution.  This flux-density distribution, represented by ( )msB t
����

, is rotating at a 

speed synω  (which equals ω  in a 2-pole machine) and is “cutting” the stationary 

conductors of the stator phase windings.  A similar expression can be derived for 

a multi-pole machine with p>2 (see homework problem 9-17). 
 

�  Example 9-8   In a 2-pole machine in a balanced sinusoidal steady state, the 

applied voltages are 208 V (L-L, rms) at a frequency of 60 Hz.  Assume the 

phase-a voltage to be the reference phasor.  The magnetizing inductance 

55mL mH= .  Neglect the stator winding resistances and leakage inductances and 

assume the rotor to be electrically open-circuited.  (a) Calculate and draw the maE  

and maI  phasors. (b) Calculate and draw the space vectors mse
���

 and msi
���

 at 00tω =  

and 060tω = . (c) If the peak flux density in the air gap is 1.1 T , draw the msB
����

 

space vector in part (b) at the two instants of time. 
 

Solution      
 

(a)  With the phase-a voltage as the reference phasor,  

 

 
208 2

0 169.83 0
3

o o
maE V= ∠ = ∠  

and 

 
3

169.83
0 90 8.19 90

2 60 55 10
o o oma

ma
m

E
I A

j Lω π −= ∠ = ∠ − = ∠ −
× × ×

. 

 

These two phasors are drawn in Fig. 9-18a. 



 9-33 

 

(b)  At 0otω = , from Eq. 9-34, as shown in Fig. 9-18b, 

 

 
3 3

169.83 0 254.74 0
2 2

o o
ms ma

t o
e E V

ω =
= = ∠ = ∠

���
 

and 

 
0

3 3
8.19 90 12.28 90

2 2
o o

ms ma
t

i I A
ω =

= = ∠ − = ∠ −
���

. 

 

At 60otω = , both space vectors have rotated by an angle of 60 degrees in a 

counter-clockwise direction, as shown in Fig. 9-18b.  Therefore, 
 

 0

60 0
(1 60 ) 254.74 60

o

o
ms ms

t t
e e V

ω ω= =
= ∠ = ∠

��� ���
  

and 
0

60 0
(1 60 ) 12.28 30

o

o
ms ms

t t
i i A

ω ω= =
= ∠ = ∠ −

��� ���
. 

 

maI

maE
ot 60ω =

axisa −

o60
o30−

mse
����

msi
���
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msi
���

mse
����

ot 0ω =

axisa −

msB
����

ot 0ω =
axisa −

msB
����

o30−

ot 60ω =

(a) 

(b) 

(c) 

Figure 9-18 Example 9-7. 



 9-34 

(c)  In this example, at any time, the stator flux density space vector msB
����

 is 

oriented in the same direction as the msi
���

 space vector.  Therefore, as plotted in 

Fig. 9-18c, 

 

 
0

1.1 90
o

o
ms

t
B T

ω =
= ∠ −

����
   and     

60
1.1 30

o

o
ms

t
B T

ω =
= ∠ −

����
.  �  

 

SUMMARY/REVIEW QUESTIONS 
 

1. Draw the three-phase axis in the motor cross-section.  Also, draw the three 

phasors aV , bV , and cV  in a balanced sinusoidal steady state.  Why is the 

phase-b axis ahead of the phase-a axis by 120 degrees, but bV  lags aV  by 

120 degrees? 

2. Ideally, what should be the field (F, H, and B) distributions produced by 

each of the three stator windings?  What is the direction of this field in the 

air gap?  What direction is considered positive and what is considered 

negative? 

3. What should the conductor-density distribution in a winding be in order to 

achieve the desired field distribution in the air gap?  Express the 

conductor-density distribution ( )sn θ  for phase-a. 

4. How is sinusoidal distribution of conductor density in a phase winding 

approximated in practical machines with only a few slots available to each 

phase? 

5. How are the three field distributions (F, H, and B) related to each other, 

assuming that there is no magnetic saturation in the stator and the rotor 

iron? 

6. What is the significance of the magnetic axis of any phase winding? 

7. Mathematically express the field distributions in the air gap due to ai  as a 

function of θ .  Repeat this for bi  and ci . 

8. What do the phasors V  and I  denote?  What are the meanings of the 

space vectors ( )aB t
���

 and ( )sB t
���

at time t , assuming that the rotor circuit is 

electrically open-circuited? 

9. What is the constraint on the sum of the stator currents? 

10. What are physical interpretations of various stator winding inductances? 
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11. Why is the per-phase inductance mL  greater than the single-phase 

inductance ,1m phaseL −  by a factor of 3/2? 

12. What are the characteristics of space vectors which represent the field 

distributions ( )sF θ , ( )sH θ , and ( )sB θ  at a given time?  What notations 

are used for these space vectors?  Which axis is used as a reference to 

express them mathematically in this chapter? 

13. Why does a dc current through a phase winding produce a sinusoidal flux-

density distribution in the air gap? 

14. How are the terminal phase voltages and currents combined for 

representation by space vectors? 

15. What is the physical interpretation of the stator current space vector ( )si t
��

? 

16. With no excitation or currents in the rotor, are all of the space vectors 

associated with the stator ( ), ( ), ( )ms ms msi t F t B t
��� ���� ����

 collinear (oriented in the 

same direction)? 

17. In ac machines, a stator space vector ( )sv t
��

 or ( )si t
��

 consists of a unique set 

of phase components.  What is the condition on which these components 

are based? 

18. Express the phase voltage components in terms of the stator voltage space 

vector. 

19. Under three-phase balanced sinusoidal condition with no rotor currents, 

and neglecting the stator winding resistances sR  and the leakage 

inductance sL�  for simplification, answer the following questions: (a) 

What is the speed at which all of the space vectors rotate? (b) How is the 

peak flux density related to the magnetizing currents?  Does this 

relationship depend on the frequency f of the excitation?  If the peak flux 

density is at its rated value, then what about the peak value of the 

magnetizing currents? (c) How do the magnitudes of the applied voltages 

depend on the frequency of excitation, in order to keep the flux density 

constant (at its rated value for example)? 

20. What is the relationship between space vectors and phasors under 

balanced sinusoidal operating conditions? 
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PROBLEMS 
 

9-1 In a three-phase, 2-pole ac machine, assume that the neutral of the wye-

connected stator windings is accessible.  The rotor is electrically open-

circuited.  The phase-a is applied a current ( ) 10sinai t tω= .  Calculate aB
���

 

at the following instants of tω : 0, 90, 135, and 210 degrees.  Also, plot 

the ( )aB θ  distribution at these instants. 

9-2 In the sinusoidal conductor-density distribution shown in Fig. 9-3, make 

use of the symmetry at θ  and at ( )π θ−  to calculate the field distribution 

( )aH θ  in the air gap. 

9-3 In ac machines, why is the stator winding for phase-b placed 120 degrees 

ahead of phase-a (as shown in Fig. 9-1), whereas the phasors for phase-b 

(such as bV ) lag behind the corresponding phasors for phase-a? 

9-4 In Example 9-2, derive the expression for ( )s en θ  for a 4-pole machine.  

Generalize it for a multi-pole machine. 

9-5 In Example 9-2, obtain the expressions for ( )a eH θ , ( )a eB θ , and ( )a eF θ . 

9-6 In a 2-pole, three-phase machine with 100,sN =  calculate si
��

 and sF
���

 at a 

time t  if at that time the stator currents are as follows: (a) 10ai A= , 

5bi A= − , and 5ci A= − ; (b) 5ai A= − , 10bi A= , and 5ci A= − ; (c) 

5ai A= − , 5bi A= − , and 10ci A= . 

9-7 In a wye-connected stator, at a time t , 150 30o
sv V= ∠ −
��

.  Calculate av , 

bv , and cv  at that time. 
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9-8 Show that the expression in the square brackets of Eq. 9-26 simplifies to 

3

2
tω∠ . 

9-9 In a 2-pole, three-phase ac machine, 1.5g mm=�  and 100sN = .  During a 

balanced, sinusoidal, 60-Hz steady-state with the rotor electrically open-

circuited, the peak of the magnetizing current in each phase is 10 A.  

Assume that at 0t = , the phase-a current is at its positive peak.  Calculate 

the flux-density distribution space vector as a function of time.  What is 

the speed of its rotation? 

9-10 In Problem 9-9, what would be the speed of rotation if the machine had 6 

poles? 

9-11 By means of drawings similar to Example 9-7, show the rotation of the 

flux lines, and hence the speed, in a 4-pole machine. 

9-12 In a three-phase ac machine, 120 2 0o
aV V= ∠  and 5 2 90o

maI A= ∠ − .  

Calculate and draw mse
���

 and msi
���

 space vectors at 0t = .  Assume a 

balanced, sinusoidal, three-phase steady-state operation at 60 Hz.  Neglect 

the resistance and the leakage inductance of the stator phase windings. 

9-13 Show that in a 2-pole machine, 
2

,1 2
o s

m phase
g

r N
L

πµ
−

 =   
�

�
. 

9-14 Show that ,1

3

2m m phaseL L −= . 

9-15 In a three-phase ac machine, 120 2 0o
aV V= ∠ .  The magnetizing 

inductance 75mL mH= .  Calculate and draw the three magnetizing 

current phasors.  Assume a balanced, sinusoidal, three-phase steady-state 

operation at 60 Hz. 

9-16 In a 2-pole, three-phase ac machine, 1.5g mm=� , 24cm=� , 6r cm= , 

and 100sN = .  Under a balanced, sinusoidal, 60-Hz steady state, the peak 

of the magnetizing current in each phase is 10 A.  Assume that at 0t = , 

the current in phase-a is at its positive peak.  Calculate the expressions for 

the induced back-emfs in the three-stator phases. 

9-17 Recalculate Eq. 9-41 for a multi-pole machine with 2p > . 

9-18 Calculate mL  in a p-pole machine ( 2p ≥ ). 
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9-19 Combine the results of Problems 9-17 and 9-18 to show that for 2p ≥ , 

( ) ( )ms m mse t j L i tω=
��

. 
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CHAPTER  10  
 

SINUSOIDAL PERMANENT 
MAGNET AC (BRUSHLESS 
DC) DRIVES, LCI-
SYNCHRONOUS MOTOR 
DRIVES, AND 
SYNCHRONOUS 
GENERATORS 
 
 

10-1 INTRODUCTION 
 

Having been introduced to ac machines and their analysis using space vector 

theory, we will now study an important class of ac drives, namely sinusoidal-

waveform, permanent-magnet ac (PMAC) drives.  In trade literature, they are also 

called "brushless dc" drives.  The motors in these drives have three phase, 

sinusoidally-distributed ac stator windings and the rotor has dc excitation in the 

form of permanent magnets.  We will examine these machines for servo 

applications, usually in small (< 10 kW) power ratings.  In such drives, the stator 

windings of the machine are supplied by controlled currents which require a 

closed-loop operation, as shown in the block diagram of Fig. 10-1. 

 

These drives are also related to the ECM drives of Chapter 7.  The difference here 

is the sinusoidally-distributed nature of the stator windings that are supplied by 

sinusoidal wave-form currents.  Also, the permanent magnets on the rotor are 

shaped to induce (in the stator windings) back-emfs that are ideally sinusoidally-

varying with time.  Unlike the ECM drives, PMAC drives are capable of 

producing a smooth torque, and thus they are used in high performance 
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applications.  They do not suffer from the maintenance problems associated with 

brush-type dc machines.  They are also used where a high efficiency and a high 

power density are required. 

 

PMAC drives used in low power ratings are in principle similar to synchronous-

motor drives used in very large power ratings (in excess of one megawatt) in 

applications such as controlling the speed of induced-draft fans and boiler feed-

water pumps in the central power plants of electric utilities.  Such synchronous-

motor drives are briefly described in section 10-5. 

 

The discussion of PMAC drives also lends itself to the analysis of line-connected 

synchronous machines, which are used in very large ratings in the central power 

plants of utilities to generate electricity.  We will briefly analyze these 

synchronous generators in section 10-6. 
 

10-2 THE BASIC STRUCTURE OF PERMANENT-MAGNET AC 
SYNCHRONOUS MACHINES 

 

We will first consider 2-pole machines, like the one shown schematically in Fig. 

10-2a, and then we will generalize our analysis to p-pole machines where 2p > .  

The stator contains three-phase, wye-connected, sinusoidally-distributed windings 

(discussed in Chapter 9), which are shown in the cross-section of Fig. 10-2a.  

These sinusoidally-distributed windings produce a sinusoidally-distributed mmf 

in the air gap. 

Figure 10-1 Block diagram of the closed loop operation of a PMAC drive. 
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10-3 PRINCIPLE OF OPERATION 
 

10-3-1 Rotor-Produced Flux Density Distribution 
 

The permanent-magnet pole pieces mounted on the rotor surface are shaped to 

ideally produce a sinusoidally-distributed flux density in the air gap.  Without 

delving into detailed construction, Fig. 10-2a schematically shows a two-pole 

rotor.  Flux lines leave the rotor at the north pole to re-enter the air gap at the 

south pole.  The rotor-produced flux-density distribution in the air gap (due to 

flux lines that completely cross the two air gaps) has its positive peak ˆ
rB  directed 

along the north pole axis.  Because this flux density is sinusoidally distributed, it 

can be represented, as shown in Fig. 10-2b, by a space vector of length ˆ
rB , and its 

orientation can be established by the location of the positive peak of the flux-

density distribution.  As the rotor turns, the entire rotor-produced flux density 

distribution in the air gap rotates with it.  Therefore, using the stationary stator 

phase-a axis as the reference, we can represent the rotor-produced flux density 

space vector at a time t as 

 

ˆ( ) ( )r r mB t B tθ= ∠
�

       (10-1) 

 

Figure 10-2 Two-pole PMAC machine. 
(a) (b) 
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where the rotor flux-density distribution axis is at an angle ( )m tθ  with respect to 

the a-axis.  In Eq. 10-1, permanent magnets produce a constant ˆ
rB , but ( )m tθ  is a 

function of time, as the rotor turns. 

 

10-3-2  Torque Production 
 

We would like to compute the electromagnetic torque produced by the rotor.  

However, the rotor consists of permanent magnets and we have no direct way of 

computing this torque.  Therefore, we will first calculate the torque exerted on the 

stator; this torque is transferred to the motor foundation.  The torque exerted on 

the rotor is equal in magnitude to the stator torque but acts in the opposite 

direction. 

 

An important characteristic of the machines under consideration is that they are 

supplied through the power-processing unit shown in Fig. 10-1, which controls 

the currents ia(t), ib(t), and ic(t) supplied to the stator at any instant of time.  At 

any time t, the three stator currents combine to produce a stator current space 

vector ( )si t
�

 which is controlled to be ahead of (or leading) the space vector ( )rB t
�

 

by an angle of 090  in the direction of rotation, as shown in Fig. 10-3a.  This 

produces a torque on the rotor in a counter-clockwise direction.  The reason for 

maintaining a 090  angle will be justified shortly.  With the a-axis as the reference 

axis, the stator current space vector can be expressed as 

 

ˆ( ) ( ) ( )
ss s ii t I t tθ= ∠

�
 where   0( ) ( ) 90

si mt tθ θ= +   (10-2) 

 

During a steady-state operation, ŝI  is kept constant while ( )m mtθ ω=  changes 

linearly with time. 

 

We have seen the physical interpretation of the current space vector ( )si t
�

 in 

Chapter 9.  In Fig. 10-3a at a time t, the three stator phase currents combine to 

produce an mmf distribution in the air gap.  This mmf distribution is the same as 

that produced in Fig. 10-3b by a single equivalent stator winding which has sN  
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sinusoidally-distributed turns supplied by a current ŝI  and which has its magnetic 

axis situated along the ( )si t
��

 vector. 

 

As seen from Fig. 10-3b, by controlling the stator current space vector ( )si t
��

 to be 

090  ahead of ( )rB t
���

, all of the conductors in the equivalent stator winding will 

experience a force acting in the same direction, which in this case is clockwise on 

the stator (and hence produces a counter-clockwise torque on the rotor).  This 

justifies the choice of 090 : it results in the maximum torque per ampere of stator 

current because at any other angle some conductors will experience a force in the 

direction opposite that on other conductors, a condition which will result in a 

smaller net torque. 

 

As ( )rB t
���

 rotates with the rotor, the space vector ( )si t
��

 is made to rotate at the 

same speed, maintaining a “lead” of 090 .  Thus, the torque developed in the 

machine of Fig. 10-3 depends only on ˆ
rB  and ŝI , and is independent of mθ .  

Therefore, to simplify our calculation of this torque in terms of the machine 

parameters, we will redraw Fig. 10-3b as in Fig. 10-4 by assuming 00mθ = .  

Using the expression for force ( emf B i= � ), we can calculate the clockwise torque 

acting on the stator as follows: in the equivalent stator winding shown in Fig. 10-

Figure 10-3 Stator current space vector and rotor field space vector  
in a PMAC drive. 

(a) (b) 

rB
���

mθ

axisa −

si
��

N

S
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4, at an angle ξ , the differential angle dξ  contains ( )sn dξ ξ⋅  conductors.  Using 

Eq. 9-5 and noting that the angle ξ  is measured here from the location of the peak 

conductor density, the conductor density ( ) ( / 2) coss sn Nξ ξ= ⋅ .  Therefore, 
 

The number of conductors in the differential angle dξ  cos
2

sN
dξ ξ= ⋅  (10-3) 

 

The rotor-produced flux density at angle ξ  is ˆ cosrB ξ .  Therefore, the torque 

( )emdT ξ  produced by these conductors (due to the current ŝI  flowing through 

them) located at angle ξ , at a radius r, and of length �  is 
 

�

.

. .

ˆ ˆ( ) cos cos
2

s
em r s

cond length
flux density at

no of cond in d

N
dT r B I d

ξ
ξ

ξ ξ ξ ξ= ⋅ ⋅ ⋅ ⋅�
�����

�������
   (10-4) 

 

To account for the torque produced by all of the stator conductors, we will 

integrate the above expression from / 2ξ π= −  to / 2ξ π= , and then multiply by 

a factor of 2, making use of symmetry: 
 

/ 2 / 2
2

/ 2 / 2

ˆ ˆ ˆ ˆ2 ( ) 2 cos ( )
2 2

s s
em em r s r s

N N
T dT r B I d r B I

ξ π π

ξ π π

ξ ξ ξ π
=

=− −

= × = ⋅ =∫ ∫� �  (10-5) 
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Figure 10-4 Torque calculation on the stator. 
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In the above equation, all quantities within the brackets, including ˆ
rB  in a 

machine with permanent magnets, depend on the machine design parameters and 

are constants.  As noted earlier, the electromagnetic torque produced by the rotor 

is equal to that in Eq. 10-5 in the opposite direction (counter-clockwise in this 

case).  This torque in a 2-pole machine can be expressed as 
 

ˆ
em sTT k I=  where   ˆ

2
s

T r

N
k r Bπ= �  ( 2p = ) (10-6) 

 

In the above equation, kT is the machine torque constant, which has the units of 

Nm/A.  Eq. 10-6 shows that by controlling the stator phase currents so that the 

corresponding stator current space vector is ahead (in the desired direction) of the 

rotor-produced flux-density space vector by 090 , the torque developed is only 

proportional to ŝI .  This torque expression is similar to that in the brush-type dc-

motor drives of Chapter 7.  This is the reason why such drives are called 

"brushless-dc" drives. 

 

The similarities between the brush-type dc motor drives of Chapter 7 and the 

“brushless-dc” motor drives are shown by means of Fig. 10-5.  In the brush-type 

dc motors, the flux fφ  produced by the stator and the armature flux aφ  produced 

by the armature winding remain directed orthogonal (at 90o ) to each other, as 

shown in Fig. 10-5a.  The stator flux fφ  is stationary, and so is aφ  (due to the 

commutator action), even though the rotor is turning.  The torque produced is 

controlled by the armature current ( )ai t .  In “brushless-dc” motor drives, the 

stator-produced flux-density , ( )
ss iB t�

�
 due to ( )si t

�
 is controlled to be directed 

orthogonal (at 090  in the direction of rotation) to the rotor flux-density ( )rB t
�

, as 

shown in Fig. 10-5b.  Both of these space vectors rotate at the speed mω  of the 

rotor, maintaining the 090  angle between the two.  The torque is controlled by the 

magnitude ˆ ( )sI t  of the stator-current space vector. 
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At this point, we should note that PMAC drives constitute a class which we will 

call self-synchronous motor drives, where the speed of the stator-produced mmf 

distribution is synchronized to be equal the mechanical speed of the rotor.  This 

feature characterizes a machine as a synchronous machine.  The term “self” is 

added to distinguish these machines from the conventional synchronous machines 

described in section 10-6.  In PMAC drives, this synchronism is established by a 

closed feedback loop in which the measured instantaneous position of the rotor 

directs the power-processing unit to locate the stator mmf distribution 90 degrees 

ahead of the rotor-field distribution.  Therefore, there is no possibility of losing 

synchronism between the two, unlike in the conventional synchronous machines 

of section 10-6. 

 

10-3-3  Mechanical System of PMAC Drives 
 

The electromagnetic torque acts on the mechanical system connected to the rotor, 

as shown in Fig. 10-6, and the resulting speed mω  can be obtained from the 

equation below: 

 

m em L

eq

d T T

dt J

ω −=        (10-7) 
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Figure 10-5 Similarities between (a) dc motor and (b) brushless dc motor drives. 

N S

aφ

fφ

(stationary)

(stationary)

o90



 10-9 

where eqJ  is the combined motor-load inertia and LT  is the load torque, which 

may include friction.  The rotor position ( )m tθ  is  

 

( ) (0) ( )
t

m m mo
t dθ θ ω τ τ= + ⋅∫  (τ  = variable of integration)  (10-8) 

 

where (0)mθ  is the rotor position at time t=0. 

 

10-3-4  Calculation of the Reference Values *( )ai t , *( )bi t , and *( )ci t  of the Stator 

Currents 
 

The controller in Fig. 10-1 is responsible for controlling the torque, speed, and 

position of the mechanical system.  It does so by calculating the instantaneous 

value of the desired (reference) torque * ( )emT t  that the motor must produce.  The 

reference torque may be generated by the cascaded controller discussed in 

Chapter 8.  From Eq. 10-6, *ˆ ( )sI t , the reference value of the amplitude of the 

stator-current space vector, can be calculated as 

 
*

* ( )ˆ ( ) em
s

T

T t
I t

k
=         (10-9) 

 

where Tk  is the motor torque constant given in Eq. 10-6 ( Tk  is usually listed in 

the motor specification sheet). 

 

The controller in Fig. 10-1 receives the instantaneous rotor position mθ , which is 

measured, as shown in Fig. 10-1, by means of a mechanical sensor such as a 

Figure 10-6 Rotor-load mechanical system. 

Motor Load 

LT

emT
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resolver or an optical encoder (with some restrictions), as discussed in Chapter 

17. 

 

With ( )m tθ  as one of the inputs and *ˆ ( )sI t  calculated from Eq. 10-9, the 

instantaneous reference value of the stator-current space vector becomes 

 
* * *ˆ( ) ( ) ( )

ss s ii t I t tθ= ∠
��

 where * ( ) ( )
2si mt t
πθ θ= +  (2-pole)           (10-10) 

 

Eq. 10-10 assumes a 2-pole machine and the desired rotation to be in the counter-

clockwise direction.  For a clockwise rotation, the angle * ( )
si

tθ  in Eq. 10-10 will 

be ( ) / 2m tθ π− .  In a multi-pole machine with p>2, the electrical angle * ( )
si

tθ  will 

be 

 

* ( ) ( )
2 2si m

p
t t

πθ θ= ±   ( 2)p ≥               (10-11) 

 

where ( )m tθ  is the mechanical angle.  From 
*
( )si t

��
 in Eq. 10-10 (with Eq. 10-11 

for * ( )
si

tθ  in a machine with p>2), the instantaneous reference values *( )ai t , *( )bi t , 

and *( )ci t  of the stator phase currents can be calculated using the analysis in the 

previous chapter (Eqs. 9-24a through 9-24c): 

 

* * * *2 2 ˆ( ) Re ( ) ( )cos ( )
3 3 sa s s ii t i t I t tθ = = 

�
              (10-12a) 

 

* * * *2 2 2 2ˆ( ) Re ( ) ( )cos( ( ) )
3 3 3 3sb s s ii t i t I t t

π πθ = ∠ − = −  

�
           (10-12b) 

and 

 

* * * *2 4 2 4ˆ( ) Re ( ) ( )cos( ( ) )
3 3 3 3sc s s ii t i t I t t

π πθ = ∠ − = −  

�
            (10-12c) 
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Section 10-4, which deals with the power-processing unit and the controller, 

describes how the phase currents, based on the above reference values, are 

supplied to the motor.  Eqs. 10-12a through 10-12c show that in the balanced 

sinusoidal steady state, the currents have the constant amplitude of *
ŝI ; they vary 

sinusoidally with time as the angle * ( )
si

tθ  in Eq. 10-10 or Eq. 10-11 changes 

continuously with time at a constant speed mω : 

 

* ( ) [ (0) ]
2 2si m m

p
t t

πθ θ ω= + ±                 (10-13) 

 

where (0)mθ  is the initial rotor angle, measured with respect to the phase-a 

magnetic axis. 

 

�  Example 10-1   In a three-phase, 2-pole, brushless-dc motor, the torque 

constant 0.5 /Tk Nm A= .  Calculate the phase currents if the motor is to produce 

a counter-clockwise holding torque of 5 Nm  to keep the rotor, which is at an 

angle of 045mθ = , from turning. 

 

Solution     From Eq. 10-6, ˆ / 10s em TI T k A= = .  From Eq. 10-10, 

0 090 135
si mθ θ= + = .  Therefore, 0ˆ( ) 10 135

ss s ii t I θ= ∠ = ∠
��

A , as shown in Fig. 10-

7.  From Eqs. 10-12a through 10-12c, 

 

2 ˆ cos 4.71
3 sa s ii I Aθ= = − ,  

02 ˆ cos( 120 ) 6.44
3 sb s ii I Aθ= − = , and 

02 ˆ cos( 240 ) 1.73
3 sc s ii I Aθ= − = − . 

 

Since the rotor is not turning, the phase currents in this example are dc.         �  
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10-3-5 Induced EMFs in the Stator Windings during Balanced Sinusoidal 
Steady State 
 

In the stator windings, emfs are induced due to two flux-density distributions: 

 

1) As the rotor rotates with an instantaneous speed of ( )m tω , so does 

the space vector ( )rB t
���

 shown in Fig. 10-3a.  This rotating flux-

density distribution “cuts” the stator windings to induce a back-

emf in them.  

 

2) The stator phase-winding currents under a balanced sinusoidal 

steady state produce a rotating flux-density distribution due to the 

rotating ( )si t
��

 space vector.  This rotating flux-density distribution 

induces emfs in the stator windings, similar to those induced by the 

magnetizing currents in the previous chapter. 

 

Neglecting saturation in the magnetic circuit, the emfs induced due to the two 

causes mentioned above can be superimposed to calculate the resultant emf in the 

stator windings. 

axisc −

axisa −

axisb −

N

S

bi

ai

ci

o45

rB
���

si
��

o135

Figure 10-7 Stator current space vector for Example 10-1. 
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In the following subsections, we will assume a 2-pole machine in a balanced 

sinusoidal steady state, with a rotor speed of mω  in the counter-clockwise 

direction.  We will also assume that at 0t =  the rotor is at 090mθ = −  for ease of 

drawing the space vectors. 

 

10-3-5-1   Induced EMF in the Stator Windings due to Rotating ( )rB t
���

 

 

We can make use of the analysis in the previous chapter that led to Eq. 9-41.  In 

the present case, the rotor flux-density vector ( )rB t
���

 is rotating at the 

instantaneous speed of mω  with respect to the stator windings.  Therefore, in Eq. 

9-41, substituting ( )rB t
���

 for ( )msB t
����

 and mω  for synω , 

 

,

3
( ) ( ) ( )

2 2r

s
ms m rB

N
e t j r B tω π=���

��� ���
�                (10-14) 

 

We can define a voltage constant Ek , equal to the torque constant Tk  in Eq. 10-6 

for a 2-pole machine: 

 

ˆ
/ 2

s
E T r

NV Nm
k k r B

rad s A
π   = =      

�                (10-15) 

 

where ˆ
rB  (the peak of the rotor-produced flux-density) is a constant in 

permanent-magnet synchronous motors.  In terms of the voltage constant Ek , the 

induced voltage space vector in Eq. 10-14 can be written as 

 

0
,

3 3
( ) ( ) { ( ) 90 }

2 2rms E m m E m mBe t j k t k tω θ ω θ= ∠ = ∠ +���

���
             (10-16) 

 

The rotor flux-density space vector ( )rB t
���

 and the induced-emf space vector 

, ( )
rms Be t���

���
 are drawn for time 0t =  in Fig. 10-8a. 
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10-3-5-2 Induced EMF in the Stator Windings due to Rotating ( )si t
��

: 

Armature Reaction 
 

In addition to the flux-density distribution in the air gap created by the rotor 

magnets, another flux-density distribution is established by the stator phase 

currents.  As shown in Fig. 10-8b, the stator-current space vector ( )si t
��

 at time 

0t =  is made to lead the rotor position by 090 .  Because we are operating under a 

balanced sinusoidal steady state, we can make use of the analysis in the previous 

chapter, where Eq. 9-40 showed the relationship between the induced-emf space 

vector and the stator-current space vector.  Thus, in the present case, due to the 

rotation of ( )si t
��

, the induced voltages in the stator phase windings can be 

represented as 

 

, ( ) ( )
sms m m sie t j L i tω=��

��� ��
                 (10-17) 

 

Space vectors , sms ie ��

���
 and si

��
 are shown in Fig. 10-8b at time 0t = . 

 

Note that the magnetizing inductance mL  in the PMAC motor has the same 

meaning as in the generic ac motors discussed in Chapter 9.  However, in PMAC 

axisa −
, rms Be ���

����

mωt 0=

N

mω

(a) (b) 

Figure 10-8 (a) Induced emf due to rotating rotor flux density space vector; 
(b) induced emf due to rotating stator-current space vector. 

axisa −si
��

mω t 0=

rB
���

N

mω

, sms ie ��
����

rB
���
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motors, the rotor on its surface has permanent magnets (exceptions are motors 

with interior permanent magnets) whose permeability is effectively that of the air 

gap.  Therefore, PMAC motors have a larger equivalent air gap, thus resulting in 

a smaller value of mL  (see Eq. 9-36 of the previous chapter). 

 

10-3-5-3   Superposition of the Induced EMFs in the Stator Windings 
 

In PMAC motors, rotating ( )rB t
���

 and ( )si t
��

 are present simultaneously.  Therefore, 

the emfs induced due to each one can be superimposed (assuming no magnetic 

saturations) to obtain the resultant emf (excluding the leakage flux of the stator 

windings): 

 

 , ,( ) ( ) ( )
r sms ms msB ie t e t e t= +��� ��

��� ��� ���
                (10-18) 

 

Substituting from Eqs. 10-16 and 10-17 into Eq. 10-18, the resultant induced emf 

( )mse t
���

 is 

 

3
( ) { ( ) 90 } ( )

2
o

ms E m m m m se t k t j L i tω θ ω= ∠ + +
��� ��

              (10-19) 

 

The space vector diagram is shown in Fig. 10-9a at time 0t = .  The phase-a 

phasor equation corresponding to the space vector equation above can be written, 

noting that the phasor amplitudes are smaller than the space vector amplitudes by 

a factor of 3/2, but the phasor and the corresponding space vector have the same 

orientation: 

 

,

{ ( ) 90 }

ma Br

o
ma E m m m m a

E

E k t j L Iω θ ω= ∠ + +
����

���������
              (10-20) 

 

The phasor diagram from Eq. 10-20 for phase-a is shown in Fig. 10-9b. 
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Per-Phase Equivalent Circuit 
 

Corresponding to the phasor representation in Eq. 10-20 and the phasor diagram 

in Fig. 10-9b, a per-phase equivalent circuit for phase-a can be drawn as shown in 

Fig. 10-10a.  The voltage 
, rma B

E ��� , induced due to the rotation of the rotor field 

distribution rB
���

, is represented as an induced back-emf.  The second term on the 

right side of Eq. 10-20 is represented as a voltage drop across the magnetizing 

inductance mL .  To complete this per-phase equivalent circuit, the stator-winding 

leakage inductance sL�  and the resistance sR  are added in series.  The sum of the 

magnetizing inductance mL  and the leakage inductance sL�  is called the 

(a) (b) 

Figure 10-9 (a) Space vector diagram of induced emfs;  
(b) phasor diagram for phase-a. 

Real axis−

maE

, rma BE ���
aI

N

mω

si
��

rB
���

t 0=

axisa −

m m sj L iω
��

mω

, rms Be ���
����

mse
����

m aj L Iω

(a) (b) 
Figure 10-10 (a) Per-phase equivalent circuit; (b) simplified equivalent circuit. 

sL
�����	����


sR

aV

mLlsL

, rma BE ���

−

+

aI

−

+

maE

+

−

aV

s sj L jXω =

faE

−

+

aI

−

+
P
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synchronous inductance sL : 

 

s s mL L L= +�                   (10-21) 

 

We can simplify the equivalent circuit of Fig. 10-10a by neglecting the resistance 

and by representing the two inductances by their sum, sL , as done in Fig. 10-10b.  

To simplify the notation, the induced back-emf is called the field-induced back-

emf faE  in phase-a, where, from Eq. 10-20, the peak of this voltage in each phase 

is  

 

ˆ
f E mE k ω=                   (10-22) 

 

Notice that in PMAC drives the power-processing unit is a source of controlled 

currents such that aI  is in phase with the field-induced back-emf faE , as 

confirmed by the phasor diagram of Fig. 10-9b.  The power-processing unit 

supplies this current by producing a voltage which, for phase-a in Fig. 10-10b is 

 

 a fa m s aV E j L Iω= +                  (10-23) 

 

�  Example 10-2   In a 2-pole, three-phase (PMAC) brushless-dc motor drive, the 

torque constant Tk  and the voltage constant Ek  are 0.5 in MKS units.  The 

synchronous inductance is 15 mH (neglect the winding resistance).  This motor is 

supplying a torque of 3 Nm at a speed of 3,000 rpm in a balanced sinusoidal 

steady state.  Calculate the per-phase voltage across the power-processing unit as 

it supplies controlled currents to this motor. 

 

Solution     From Eq. 10-6, 

 

3.0ˆ 6
0.5sI A= = , and 

2ˆ ˆ 4
3a sI I A= = .   

 

The speed 
3000

(2 ) 314.16 /
60m rad sω π= = .  From Eq. 10-22,  
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ˆ 0.5 314.16 157.08f E mE k Vω= = × = .   

 

Assuming (0) 90o
mθ = − , from Eq. 10-10, 

0
0

s

o
i t

θ
=

= .  Hence, in the per-phase 

equivalent circuit of Fig. 10-10b,  

 

4.0 0o
aI A= ∠  and 0157.08 0faE V= ∠ .   

 

Therefore, from Eq. 10-23, in the per-phase equivalent circuit of Fig. 10-10b, 

 
0 3 0

0

157.08 0 314.16 15 10 4.0 0

157.08 18.85

158.2 6.84 .

a fa m s aV E j L I j

j

V

ω −= + = ∠ + × × × ∠

= +
= ∠

  

          �  
 

10-4 THE CONTROLLER AND THE POWER-PROCESSING UNIT 
 (PPU) 
 

As shown in the block diagram of Fig. 10-1, the task of the controller is to dictate 

the switching in the power-processing unit, such that the desired currents are 

supplied to the PMAC motors.  This is further illustrated in Fig. 10-11a, where 

phases b and c are omitted for simplification.  The reference signal *
emT  is 

generated from the outer speed and position loops discussed in Chapter 8.  The 

rotor position mθ  is measured by the resolver (discussed in Chapter 17) connected 

to the shaft.  Knowing the torque constant Tk  allows us to calculate the reference 

current *
ŝI  to be * /em TT k  (from Eq. 10-9).  Knowing *

ŝI  and mθ  allows the 

reference currents *
ai , *

bi , and *
ci  to be calculated at any instant of time from Eq. 

10-11 and Eqs. 10-12a through 10-12c. 

 

One of the easiest ways to ensure that the motor is supplied the desired currents is 

to use hysteresis control similar to that discussed in Chapter 7 for ECM drives.  

The measured phase current is compared with its reference value in the hysteresis 
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comparator, whose output determines the switch state (up or down), resulting in 

current as shown in Fig. 10-11b. 

 

In spite of the simplicity of the hysteresis control, one perceived drawback of this 

controller is that the switching frequency changes as a function of the back-emf 

waveform.  For this reason, constant switching frequency controllers are used.  

They are beyond the scope of this book, but Reference [3], listed at the end of this 

chapter, is an excellent source of information on them. 

Figure 10-11 (a) Block diagram representation of hysteresis current control;  
(b) current waveform. 

T

1

k

*
ŝI

*
emT

*( )ai t
*( )bi t
*( )ci t

Σ ( )Aq t

phase a

( )ai t

dV
+
−

( )m tθ

+

−

(a) 

(b) 

reference current

actual current

t0

.From Eq 10 6−

using Eqs. 10-11 and 10-12
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10-5 LOAD-COMMUTATED-INVERTER (LCI) SUPPLIED 
SYNCHRONOUS MOTOR DRIVES 

 

Applications such as induced-draft fans and boiler feed-water pumps in the 

central power plants of electric utilities require adjustable-speed drives in very 

large power ratings, often in excess of one megawatt.  At these power levels, even 

the slightly higher efficiency of synchronous motors, compared to the induction 

motors which we will discuss in the next three chapters, can be substantial.  

Moreover, to adjust the speed of synchronous motors, it is possible to use 

thyristor-based power-processing units, which are less expensive at these 

megawatt power ratings compared to the switch-mode power-processing units 

discussed in Chapter 4.   

 

The block diagram of LCI drives is shown in Fig. 10-12, where the synchronous 

motor has a field winding on the rotor, which is supplied by a dc current that can 

be adjusted, thus providing another degree of control.  On the utility side, a line-

commutated thyristor converter, which is described in Chapter 17 in connection 

with dc drives, is used.  A similar converter is used on the motor side, where the 

commutation of currents is provided by the load, which in this case is a 

synchronous machine.  This is also the reason for calling the motor-side converter 

a load-commutated inverter (LCI).  A filter inductor, which makes the input to the 

load-commutated inverter appear as a dc current source, is used in the dc-link 

between the two converters.  Hence, this inverter is also called a current-source 

inverter (in contrast to the switch-mode converters discussed in Chapter 4, where 

a parallel-connected capacitor appears as a dc voltage source - thus such 

converters are sometimes called voltage-source inverters).  Further details of LCI-

synchronous motor drives can be found in Reference [1]. 

dL

dI
fI

Synchronous
     motor

Load-commutated
       inverter

ac line
 input

Line-commutated
      converter

Figure 10-12 LCI-synchronous motor drive. 
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10-6 SYNCHRONOUS GENERATORS 
 

Today it is rare for synchronous machines without any power electronics interface 

(PPU) to be used as motors, which run at a constant speed that is dictated by the 

frequency of the utility grid.  In the past, constant-speed synchronous machines in 

large power ratings were used as synchronous condensers (many still exist) in 

utility substations to provide voltage support and stability enhancement.  

However, the recent trend is to use static (semiconductor-based) controllers, 

which can provide reactive power (leading and lagging) without the maintenance 

problems associated with rotating equipment.  Therefore, the role of synchronous 

machines is mainly to generate electricity in large central power plants of electric 

utilities, where they are driven by turbines fueled by gas, by steam in coal-fired or 

nuclear plants, or propelled by water flow in hydroelectric plants. 

 

10-6-1 The Structure of Synchronous Machines 
 

In the above application, turbines and synchronous generators are large and 

massive, but their stator windings, in principle, are the same as their smaller-

power counterpart.  Generators driven by gas and steam turbines often rotate at 

high speeds and thus have a 2-pole, round-rotor structure.  Hydraulic-turbine 

driven generators operate at very low speeds, and thus must have a large number 

of poles to generate a 60-Hz (or 50-Hz) frequency.  This requires a salient-pole 

structure for the rotor, as discussed in Chapter 6.  This saliency causes unequal 

magnetic reluctance along various paths through the rotor.  Analysis of such 

salient-pole machines requires a sophisticated analysis, which is beyond the scope 

of this book.  Therefore, we will assume the rotor to be perfectly round (non-

salient) with a uniform air gap and thus to have a uniform reluctance in the path 

of flux lines.   

 

A field winding is supplied by a dc voltage, resulting in a dc current fI .  The 

field-current fI  produces the rotor field in the air gap (which was established by 

permanent magnets in the PMAC motor discussed earlier).  By controlling fI  and 

hence the rotor-produced field, it is possible to control the reactive power 

delivered by synchronous generators, as discussed in section 10-6-2-2. 
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10-6-2 The Operating Principles of Synchronous Machines 
 

In steady state, the synchronous generator must rotate at the synchronous speed 

established by the line-fed stator windings.  Therefore, in steady state, the per-

phase equivalent circuit of PMAC motor drives in Fig. 10-10a or 10-10b applies 

to the synchronous machines as well.  The important difference is that in PMAC 

motor drives a PPU is present, which under feedback of rotor position supplies 

appropriate phase currents to the motor.  Of course, the PPU produces a voltage 

aV  shown in Fig. 10-10b, but its main purpose is to supply controlled currents to 

the motor. 

 

Line-connected synchronous machines lack the control over the currents that 

PMAC drives have.  Rather, on a per-phase basis, synchronous machines have 

two voltage sources, as shown in Fig. 10-13a - one belonging to the utility source 

and the other to the internally-induced back-emf faE .  Following the generator 

convention, the current is defined as being supplied by the synchronous generator, 

as shown in Fig. 10-13a.  This current can be calculated as follows where aV  is 

chosen as the reference phasor ( 0ˆ 0aV V= ∠ ) and the torque angle δ  associated 

with faE  is positive in the generator mode: 

 

 
ˆ ˆ ˆsin cosfa a f f

a
s s s

E V E E V
I j

jX X X

δ δ− −
= = −               (10-24) 

stability limit
steady state

stability limit
steady state

generator
mode

motoring
mode

δ
0o90− o90

emP

Figure 10-13 (a) Synchronous generator; (b) power-angle characteristic. 

(a) 

+

−

oˆ
a aV V 0= ∠

aI

+

−

ˆ
fa fE E δ= ∠

sjX

(b) 
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Taking the conjugate of aI  (represented by “*” as a superscript), 

 

 *
ˆ ˆ ˆsin cos

a

f f

s s

E E V
I j

X X

δ δ −
= +                (10-25) 

 

The total (three-phase) power supplied by the generator, in terms of peak 

quantities, is 

 

 *
ˆ ˆ ˆsin cos3 3 ˆRe( ) Re[ ]

2 2a

f f
em a

s s

E E V
P V I V j

X X

δ δ −
= = +  

or 

 
ˆ ˆ sin3

2
f

em
s

E V
P

X

δ
=                  (10-26) 

 

If the field current is constant, ˆ
fE  at the synchronous speed is also constant, and 

thus the power output of the generator is proportional to the sine of the torque 

angle δ  between faE  and aV .  This power-angle relationship is plotted in Fig. 10-

13b for both positive and negative values of δ . 

 

10-6-2-1  Stability and Loss of Synchronism 
 

Fig. 10-13b shows that the power supplied by the synchronous generator, as a 

function of δ , reaches its peak at 090 .  This is the steady-state limit, beyond 

which the synchronism is lost.  This can be explained as follows:  for values of δ  

below 90 degrees, to supply more power, the power input from the mechanical 

prime-mover is increased (for example, by letting more steam into the turbine).  

This momentarily speeds up the rotor, causing the torque angle δ  associated with 

the rotor-induced voltage faE  to increase.  This in turn, from Eq. 10-26, increases 

the electrical power output, which finally settles at a new steady state with a 

higher value of the torque angle δ .  However, beyond δ  = 90 degrees, increasing 

δ  causes the output power to decline, which results in a further increase in δ  

(because more mechanical power is coming in while less electrical power is going 
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out).  This increase in δ  causes an intolerable increase in machine currents, and 

the circuit breakers trip to isolate the machine from the grid, thus saving the 

machine from being damaged.   

 

The above sequence of events is called the “loss of synchronism,” and the 

stability is lost.  In practice, transient stability, in which there may be a sudden 

change in the electrical power output, forces the maximum value of the steady-

state torque angle δ  to be much less than 90 degrees, typically in a range of 30 to 

45 degrees.  A similar explanation applies to the motoring mode with negative 

values of δ .   

 

10-6-2-2  Field (Excitation) Control to Adjust Reactive Power and Power 
Factor 
 

The reactive power associated with synchronous machines can be controlled in 

magnitude as well as in sign (leading or lagging).  To discuss this, let us assume, 

as a base case, that a synchronous generator is supplying a constant power, and 

the field current fI  is adjusted such that this power is supplied at a unity power 

factor, as shown in the phasor diagram of Fig. 10-14a.   

 

Over-Excitation:  Now, an increase in the field current (called over-excitation) 

will result in a larger magnitude of faE  (assuming no magnetic saturation, ˆ
fE  

depends linearly on the field current fI ).  However, ˆ sinfE δ  must remain 

constant (from Eq. 10-26, since the power output is constant).  This results in the 

{,a qI

,a qI




o90

o90

aI

aI

aI
aI

s ajX I
s ajX I

s ajX I

faEfaE
faE

δ δ δ
aV aV aV

(a) (b) (c) 
Figure 10-14 (a) Synchronous generator at (a) unity power factor;  
(b) over-excited; (c) under-excited. 
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phasor diagram of Fig. 10-14b, where the current is lagging aV .  Considering the 

utility grid to be a load (which it is, in the generator mode of the machine), it 

absorbs reactive power as an inductive load does.  Therefore, the synchronous 

generator, operating in an over-excited mode, supplies reactive power like a 

capacitor does.  The three-phase reactive power Q can be computed from the 

reactive component of the current ,a qI  as 

 

 ,

3 ˆ
2 a qQ VI=                   (10-27) 

 

Under-Excitation: In contrast to over-excitation, decreasing fI  results in a 

smaller magnitude ˆ
fE , and the corresponding phasor diagram, assuming that the 

power output remains constant as before, can be represented as in Fig. 10-14c.  

Now the current aI  leads the voltage aV , and the load (the utility grid) supplies 

reactive power as a capacitive load does.  Thus, the generator in an under-excited 

mode absorbs reactive power like an inductor does.   

 

Similar control over the reactive power can be observed by drawing phasor 

diagrams, if the machine is operating as a synchronous motor (see homework 

problem 10-10). 

 

The reactive power of the machine can be calculated, similar to the calculations of 

the real power that led to Eq. 10-26.  This is left as homework problem 10-11. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. List various names associated with the PMAC drives and the reasons 

behind them. 

2. Draw the overall block diagram of a PMAC drive.  Why must they operate 

in a closed-loop? 

3. How do sinusoidal PMAC drives differ from the ECM drives described in 

Chapter 7? 

4. Ideally, what are the flux-density distributions produced by the rotor and 

the stator phase windings? 
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5. What does the ˆ( ) ( )r r mB t B tθ= ∠
���

 space vector represent? 

6. In PMAC drives, why at all times is the ( )si t
��

 space vector placed 90 

degrees ahead of the ( )rB t
���

 space vector in the intended direction of 

rotation? 

7. Why do we need to measure the rotor position in PMAC drives? 

8. What does the electromagnetic torque produced by a PMAC drive depend 

on? 

9. How can regenerative braking be accomplished in PMAC drives? 

10. Why are PMAC drives called self-synchronous?  How is the frequency of 

the applied voltages and currents determined?  Are they related to the 

rotational speed of the shaft? 

11. In a p-pole PMAC machine, what is the angle of the ( )si t
��

 space vector in 

relation to the phase-a axis, for a given mθ ? 

12. What is the frequency of currents and voltages in the stator circuit needed 

to produce a holding torque in a PMAC drive? 

13. In calculating the voltages induced in the stator windings of a PMAC 

motor, what are the two components that are superimposed?  Describe the 

procedure and the expressions. 

14. Does mL  in the per-phase equivalent circuit of a PMAC machine have the 

same expression as in Chapter 9?  Describe the differences, if any. 

15. Draw the per-phase equivalent circuit and describe its various elements in 

PMAC drives. 

16. Draw the controller block diagram and describe the hysteresis control of 

PMAC drives. 

17. What is an LCI-synchronous motor drive? Describe it briefly. 

18. For what purpose are line-connected synchronous generators used? 

19. Why are there problems of stability and loss of synchronism associated 

with line-connected synchronous machines? 

20. How can the power factor associated with synchronous generators be 

made to be leading or lagging? 

 



 10-27 

REFERENCES 
 

1. N. Mohan, T. Undeland, and W. Robbins, Power Electronics: Converters, 

Applications, and Design, 2nd edition, 1995, John Wiley & Sons, New York, 

NY. 

2. T. Jahns, Variable Frequency Permanent Magnet AC Machine Drives, Power 

Electronics and Variable Frequency Drives, (edited by B. K. Bose), IEEE 

Press, 1997. 

3. Kazmierkowski and Tunia, “Automatic Control of Converter-Fed Drives,” 

Elsevier, 1994. 

 

PROBLEMS 
 

10-1 Calculate the torque constant, similar to that in Eq. 10-6, for a 4-pole 

machine, where sN  equals the total number of turns per-phase. 

10-2 Prove that Eq. 10-11 is correct. 

10-3 Repeat Example 10-1 for 45o
mθ = − . 

10-4 Repeat Example 10-1 for a 4-pole machine with the same value of Tk  as 

in Example 10-1. 

10-5 The PMAC machine of Example 10-2 is supplying a load torque 

5LT Nm=  at a speed of 5,000 rpm.  Draw a phasor diagram showing aV  

and aI , along with their calculated values. 

10-6 Repeat Problem 10-5 if the machine has p=4, but has the same values of 

Ek , Tk , and sL  as before. 

10-7 Repeat Problem 10-5, assuming that at time t=0, the rotor angle 

(0) 0o
mθ = . 

10-8 The PMAC motor in Example 10-2 is driving a purely inertial load.  A 

constant torque of 5 Nm is developed to bring the system from rest to a 

speed of 5,000 rpm in 5 s.  Neglect the stator resistance and the leakage 

inductance.  Determine and plot the voltage ( )av t  and the current ( )ai t  as 

functions of time during this 5-second interval. 
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10-9 In Problem 10-8, the drive is expected to go into a regenerative mode at 

5t s+= , with a torque 5emT Nm= − .  Assume that the rotor position at this 

instant is zero: 0mθ = .  Calculate the three stator currents at this instant. 

10-10 Draw the phasor diagrams associated with under-excited and over-excited 

synchronous motors and show the power factor of operation associated 

with each. 

10-11 Calculate the expression for the reactive power in a 3-phase synchronous 

machine in terms of ˆ
fE , V̂ , sX , and δ .  Discuss the influence of ˆ

fE . 
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CHAPTER  11 
 

INDUCTION MOTORS: 
BALANCED, SINUSOIDAL 
STEADY STATE 
OPERATION 
 
 

11-1 INTRODUCTION 

 

Induction motors with squirrel-cage rotors are the workhorses of industry because 

of their low cost and rugged construction.  When operated directly from line 

voltages (a 50- or 60-Hz utility input at essentially a constant voltage), induction 

motors operate at a nearly constant speed.  However, by means of power 

electronic converters, it is possible to vary their speed efficiently.  Induction-

motor drives can be classified into two broad categories based on their 

applications: 

 

1. Adjustable-Speed Drives.  An important application of these drives is to 

adjust the speeds of fans, compressors, pumps, blowers, and the like in the 

process control industry.  In a large number of applications, this capability 

to vary speed efficiently can lead to large savings.  Adjustable-speed 

induction-motor drives are also used for electric traction, including hybrid 

vehicles. 

 

2. Servo Drives.  By means of sophisticated control discussed in Chapter 12, 

induction motors can be used as servo drives in machine tools, robotics, 

and so on by emulating the performance of dc-motor drives and brushless-

dc motor drives. 
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Because the subject of induction-motor drives is extensive, we will cover it in 

three separate chapters.  In this chapter, we will examine the behavior of 

induction machines supplied by balanced sinusoidal line-frequency voltages at 

their rated values.  In Chapter 12, we will discuss energy-efficient speed control 

of induction motor drives for process control and traction applications.  In 

Chapter 13, we will qualitatively examine how it is possible to use induction 

machines in servo applications where the dynamics of speed and motion control 

need to be very fast and precise. 

 

There are many varieties of induction motors.  Single-phase induction motors are 

used in low power ratings (fractional kW to a few kW) in applications where their 

speed does not have to be controlled in a continuous manner.  Wound-rotor 

induction generators are used in large power ratings (300 kW and higher) for 

wind-electric generation.  However, our focus in this chapter and in subsequent 

ones is on three-phase, squirrel-cage induction motors, which are commonly used 

in adjustable-speed applications. 

 

11-2 THE STRUCTURE OF THREE-PHASE, SQUIRREL-CAGE 
INDUCTION MOTORS 

 

The stator of an induction motor consists of three-phase windings, sinusoidally-

distributed in the stator slots as discussed in Chapter 9.  These three windings are 

displaced by 120° in space with respect to each other, as shown by their axes in 

Fig. 11-1a.   

 

The rotor, consisting of a stack of insulated laminations, has electrically 

conducting bars of copper or aluminum inserted (molded) through it, close to the 

periphery in the axial direction.  These bars are electrically shorted at each end of 

the rotor by electrically-conducting end-rings, thus producing a cage-like 

structure, as shown in Fig. 11-1b.  Such a rotor, called a squirrel-cage rotor, has a 

simple construction, low-cost, and rugged nature. 
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11-3 THE PRINCIPLES OF INDUCTION MOTOR OPERATION 

 

Our analysis will be under the line-fed conditions in which a balanced set of 

sinusoidal voltages of rated amplitude and frequency are applied to the stator 

windings. In the following discussion, we will assume a 2-pole structure which 

can be extended to a multi-pole machine with p > 2.   

 

Figure 11-2 shows the stator windings.  Under a balanced sinusoidal steady state 

condition, the motor-neutral “n” is at the same potential as the source-neutral.  

Therefore, the source voltages av  and so on appear across the respective phase 

windings, as shown in Fig. 11-2a.  These phase voltages are shown in the phasor 

diagram of Fig. 11-2b, where 

 

 ˆ ˆ ˆ0 , 120 , and 240o o o
a b cV V V V V V= ∠ = ∠ − = ∠ −   (11-1) 

 

and ( )
2

f
ω
π

=  is the frequency of the applied line-voltages to the motor. 

Figure 11-1  (a) Three-phase stator winding axes of an induction motor;               
(b) squirrel-cage rotor. 

(a) (b) 

axisa −

axisb −

axisc −

/2 3π

/2 3π

/2 3π

bi

ai

ci
end-rings
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To simplify our analysis, we will initially assume that the stator windings have a 

zero resistance ( 0sR = ).  Also, we will assume that 0sL =� , implying that the 

leakage flux is zero; that is, all of the flux produced by each stator winding 

crosses the air gap and links with the other two stator windings and the rotor. 

 

11-3-1  Electrically Open-Circuited Rotor 
 

Initially, we will assume that the rotor is magnetically present but that its rotor 

bars are somehow open-circuited so that no current can flow.  Therefore, we can 

use the analysis of Chapter 9, where the applied stator voltages given in Eq. 11-1 

result only in the following magnetizing currents, which establish the rotating 

flux-density distribution in the air gap: 

 

 ˆ ˆ ˆI 90 , I 210 , and I 330o o o
ma m mb m mc mI I I= ∠ − = ∠ − = ∠ −  (11-2) 

 

These phasors are shown in Fig. 11-2b, where, in terms of the per-phase 

magnetizing inductance mL , the amplitude of the magnetizing currents is 

 

 
ˆ

ˆ
m

m

V
I

Lω
=         (11-3) 

 

The space vectors at t=0 are shown in Fig. 11-3a, where, from Chapter 9, 

Figure 11-2  Balanced 3 phase sinusoidal voltages applied to the stator of an induction 
motor, rotor open-circuited.

mcI
mbI

maI

cV

bV

aV

(a) (b)

b axis−

a axis−
aibi

ci

axisc −

cv

bv

av

bv

av

cv
n +−

+

−

+

−

+−

+−

+−

Figure 11-2  Balanced 3 phase sinusoidal voltages applied to the stator of an induction 
motor, rotor open-circuited.
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 ( ) 3 ˆ
2sv t V tω= ∠

��
       (11-4) 

 

 ( ) 3 ˆ ( )
2 2ms mi t I t

πω= ∠ −
���

      (11-5) 

 

 ( ) ˆ ( )
2 2

o s
ms ms

g

N
B t I t

µ πω= ∠ −
����

�
    where   

3ˆ ˆ
2 2

o s
ms m

g

N
B I

µ=
�

  (11-6) 

and 

 ( ) ( ) ( )3
( )
2 2

s
s ms ms

N
v t e t j r B tω π= =
�� ��� ����

�      (11-7) 

 

These space vectors rotate at a constant synchronous speed synω , which in a 2-

pole machine is 

 

 synω ω=  (
/ 2syn p

ωω =  for a p-pole machine)   (11-8) 

 

�  Example 11-1   A 2-pole, 3-phase induction motor has the following physical 

dimensions: radius 7r cm= , length 9cm=� , and the air gap length 0.5g mm=� .  

Calculate sN , the number of turns per-phase, so that the peak of the flux-density 

Figure 11-3 Space vector representations at time t=0; (b) voltage and current phasors 
                    for phase-a; (c) equivalent circuit for phase-a. 

 

(a) (c) (b) 

at t 0=

synω

synω

msB
�����

a axis−
phase

maI

o90
aV

maI

aV

+

−

mj Lωsv
���

msi
����
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distribution does not exceed 0.8T  when the rated voltages of 208 V (line-line, 

rms) are applied at the 60-Hz frequency. 

 

Solution     From Eq. 11-7, the peak of the stator voltage and the flux-density 

distribution space vectors are related as follows: 

 

 
3ˆ ˆ
2 2

s
s ms

N
V r Bπ ω= �   where 

3 3 208 2ˆ ˆ 254.75
2 2 3

sV V V= = = . 

 

Substituting given values in the above expression, 56.9sN =  turns.  Since the 

number of turns must be an integer, 57sN �  turns is selected.  �  

 

11-3-2  The Short-Circuited Rotor 
 

The voltages applied to the stator completely dictate the magnetizing currents (see 

Eqs. 11-2 and 11-3) and the flux-density distribution, which is represented in Eq. 

11-6 by ( )msB t
����

 and is “cutting” the stator windings.  Assuming the stator winding 

resistances and the leakage inductances to be zero, this flux-density distribution is 

unaffected by the currents in the rotor circuit, as illustrated by the transformer 

analogy below. 

 

Transformer Analogy 

 

A two-winding transformer is shown in Fig. 11-4a, where two air gaps are 

introduced to bring the analogy closer to the case of induction machines where 

flux lines must cross the air gap twice.  The primary winding resistance and the 

leakage inductance are neglected (similar to neglecting the stator winding 

resistances and leakage inductances).  The transformer equivalent circuit is shown 

in Fig. 11-4b.  The applied voltage 1( )v t  and the flux ( )m tφ  linking the primary 

winding are related by Faraday’s Law: 

 

 1 1
md

v N
dt

φ=
        (11-9) 
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or, in the integral form, 

 

 1
1

1
( )m t v dt

N
φ = ⋅∫        (11-10) 

 

This shows that in this transformer, the flux ( )m tφ  linking the primary winding is 

completely determined by the time-integral of 1( )v t , independent of the current 2i  

in the secondary winding. 

 

This observation is confirmed by the transformer equivalent circuit of Fig. 11-4b, 

where the magnetizing current mi  is completely dictated by the time-integral of 

1( )v t , independent of the currents 2i  and 2i ′ : 

 

 1

1
( )m

m

i t v dt
L

= ⋅∫        (11-11) 

 

In the ideal transformer portion of Fig. 11-4b, the ampere-turns produced by the 

load current 2 ( )i t  are “nullified” by the additional current 2 ( )i t′  drawn by the 

primary winding, such that 

 

 1 2 2 2( ) ( )N i t N i t′ =  or  2
2 2

1

( ) ( )
N

i t i t
N

′ =    (11-12) 

 

Fig 11-4 (a) Idealized two winding transformer; (b) equivalent circuit of the two 
 winding transformer. 

(a) (b) 

m 2i i′+
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+
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           ���
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Thus, the total current drawn by the primary winding is 

 

 

2

2
1 2

1

( )

( ) ( ) ( )m

i t

N
i t i t i t

N

′

= +
�����

       (11-13) 

 

Returning to our discussion of induction machines, the rotor consists of a short-

circuited cage made up of rotor bars and the two end-rings.  Regardless of what 

happens in the rotor circuit, the flux-density distribution “cutting” the stator 

windings must remain the same as under the assumption of an open-circuited 

rotor, as represented by ( )msB t
����

 in Eq. 11-6.   

 

Assume that the rotor is turning (due to the electromagnetic torque developed, as 

will be discussed shortly) at a speed mω  in the same direction as the rotation of 

the space vectors which represent the stator voltages and the air gap flux-density 

distribution.  For now, we will assume that m synω ω< .  The space vectors at time 

t=0 are shown in the cross-section of Fig. 11-5a.  There is a relative speed 

between the flux-density distribution rotating at synω  and the rotor conductors 

(a)     (b) 

mω−
− − −

−

+ +
+

+
+

msB
�����

synω

synω

axisa −

at t 0=

sv
���

θ

Figure 11-5  (a) Induced voltages in the rotor bar; (b) motion of the rotor bar relative to  
the flux density. 

u

stationary

( )msB θ

θ
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rotating at mω .  This relative speed - that is, the speed at which the rotor is 

“slipping” with respect to the rotating flux-density distribution - is called the slip 

speed: 

 

 slip syn mslip speed ω ω ω= −       (11-14) 

 

By Faraday's Law ( )e B u= � , voltages are induced in the rotor bars due to the 

relative motion between the flux-density distribution and the rotor.  At this time 

0t = , the bar located at an angle θ  from msB
����

 in Fig. 11-5a is "cutting" a flux 

density ( )msB θ .  The flux-density distribution is moving ahead of the bar at 

position θ  at the angular speed of slipω  rad/s or at the linear speed of slipu rω= , 

where r  is the radius.  To determine the voltage induced in this rotor bar, we can 

consider the flux-density distribution to be stationary and the bar (at the angle θ ) 

to be moving in the opposite direction at the speed u, as shown in Fig. 11-5b.  

Therefore, the voltage induced in the bar can be expressed as 

 

 
�

( ) ( )bar ms slip

u

e B r= �θ θ ω       (11-15) 

 

where the bar is of length �  and is at a radius r.  The direction of the induced 

voltage can be established by visualizing that on a positive charge q in the bar, the 

force qf  equals ×u B  where u and B are vectors shown in Fig. 11-5b.  This force 

will cause the positive charge to move towards the front-end of the bar, 

establishing that the front-end of the bar will have a positive potential with respect 

to the back-end, as shown in Fig. 11-5a. 

 

At any time, the flux-density distribution varies as the cosine of the angle θ  from 

its positive peak.  Therefore in Eq. 11-15, ˆ( ) cosms msB Bθ θ= .  Hence, 

 

 bar slip ms
ˆe ( ) r B cosθ = ω θ�       (11-16) 
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11-3-2-1  The Assumption of Rotor Leakage ' 0rL =�  

 

At this point, we will make another extremely important simplifying assumption, 

to be analyzed later in more detail.  The assumption is that the rotor cage has no 

leakage inductance; that is, ' 0rL =� .  This assumption implies that the rotor has no 

leakage flux and that all of the flux produced by the rotor-bar currents crosses the 

air gap and links (or “cuts”) the stator windings.  Another implication of this 

assumption is that, at any time, the current in each squirrel-cage bar, short-

circuited at both ends by conducting end-rings, is inversely proportional to the bar 

resistance barR .   

 

In Fig. 11-6a at t=0, the induced voltages are maximum in the top and the bottom 

rotor bars “cutting” the peak flux density.  Elsewhere, induced voltages in rotor 

bars depend on cosθ , as given by Eq. 11-16.  The polarities of the induced 

voltages at the near-end of the bars are indicated in Fig. 11-6a.  Figure 11-6b 

shows the electrical equivalent circuit which corresponds to the cross-section of 

the rotor shown in Fig. 11-6a.  The size of the voltage source represents the 

magnitude of the voltage induced.  Because of the symmetry in this circuit, it is 

easy to visualize that the two end-rings (assumed to have negligible resistances 

themselves) are at the same potential.  Therefore, the rotor bar at an angle θ  from 

mω−
− − −

−

+
+

+

+

msB
�����

synω
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axisa −

at t 0=

sv
���

θ

Figure 11-6 (a) Polarities of voltages induced; (b) electrical equivalent circuit of rotor.
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the positive flux-density peak location has a current which is equal to the induced 

voltage divided by the bar resistance: 

 

 
ˆ cos( )

( ) slip msbar
bar

bar bar

r Be
i

R R
= =

� ω θθθ  (using Eq. 11-16)  (11-17) 

 

where each bar has a resistance barR .  From Eq. 11-17, the currents are maximum 

in the top and the bottom bars at this time, indicated by the largest circles in Fig. 

11-7a; elsewhere, the magnitude of the current depends on cosθ , where θ  is the 

angular position of any bar as defined in Fig. 11-6a.   

 

It is important to note that the rotor has a uniform bar density around its 

periphery, as shown in Fig. 11-6a.  The sizes of the circles in Fig. 11-7a denote 

the relative current magnitudes.  The sinusoidal rotor-current distribution is 

different than that in the stator phase winding, which has a sinusoidally-

distributed conductor density but the same current flowing through each 

conductor.  In spite of this key difference, the outcome is the same - the ampere-

turns need to be sinusoidally distributed in order to produce a sinusoidal field 

distribution in the air gap.  In the rotor with a uniform bar density, a sinusoidal 

ampere-turn distribution is achieved because the currents in various rotor bars are 

sinusoidally distributed with position at any time. 

Figure 11-7 (a) Rotor-produced flux        and the flux        ; (b) space vector diagram 
with short-circuited rotor (      = 0).′Llr
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The combined effect of the rotor-bar currents is to produce a sinusoidally-

distributed mmf acting on the air gap.  This mmf can be represented by a space 

vector ( )rF t
���

, as shown in Fig. 11-7b at time t = 0.  Due to the rotor-produced 

mmf, the resulting flux “cutting” the stator winding is represented by , rm iφ  in Fig. 

11-7a.  As argued earlier by means of the transformer analogy, the net flux-

density distribution “cutting” the voltage-supplied stator windings must remain 

the same as in the case of the open-circuited rotor.  Therefore, in order to cancel 

the rotor-produced flux , rm iφ , the stator windings must draw the additional 

currents rai ′ , rbi ′ , and rci ′  to produce the flux represented by 
, rm i

φ ′ . 

 

In the space vector diagram of Fig. 11-7b, the mmf produced by the rotor bars is 

represented by rF
���

 at time t=0.  As shown in Fig. 11-7b, the stator currents rai ′ , 

rbi ′ , and rci ′  (which flow in addition to the magnetizing currents) must produce an 

mmf rF ′
���

, which is equal in amplitude but opposite in direction to rF
���

, in order to 

neutralize its effect: 

 

 r rF F′ = −
��� ���

        (11-18) 

 

The additional currents rai ′ , rbi ′ , and rci ′  drawn by the stator windings to produce 

rF ′
���

 can be expressed by a current space vector ri′
��

, as shown in Fig. 11-7b at t=0, 

where 

 

 
/ 2
r

r
s

F
i

N

′′ =
���

��
  ( '

r̂I  = the amplitude of ri′
��

)   (11-19) 

 

The total stator current si
��

 is the vector sum of the two components: msi
���

, which 

sets up the magnetizing field, and ri′
��

, which neutralizes the rotor-produced mmf: 

 

 s ms ri i i′= +
�� ��� ��

        (11-20) 
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These space vectors are shown in Fig. 11-7b at t=0.  Eq. 11-17 shows that the 

rotor-bar currents are proportional to the flux-density peak and the slip speed.  

Therefore, the “nullifying” mmf peak and the peak current '
r̂I  must also be 

linearly proportional to ˆ
msB  and slipω .  This relationship can be expressed as 

 

 'ˆ ˆ
r i ms slipI k B ω=     ( ik = a constant)  (11-21) 

 

where ik  is a constant based on the design of the machine. 

 

During the sinusoidal steady state operating condition in Fig. 11-7b, the rotor-

produced mmf distribution (represented by rF
���

) and the compensating mmf 

distribution (represented by rF ′
���

) rotate at the synchronous speed synω  and each 

has a constant amplitude.  This can be illustrated by drawing the motor cross-

section and space vectors at some arbitrary time 1 0t > , as shown in Fig. 11-8, 

where the msB
����

 space vector has rotated by an angle 1syntω  because sv
��

 has rotated 

by 1syntω .  Based on the voltages and currents induced in the rotor bars, rF
���

 is still 

90° behind the msB
����

 space vector, as in Fig. 11-7a and 11-7b.  This implies that the 

rF
���

mω

'rF
����

syn 1tω

syn 1tω

synω

axisa −

sv
���

msB
�����

o90

 Figure 11-8 Rotor produced mmf and the compensating mmf at time t = t1. 

at 1t
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( )rF t
���

 and ( )rF t′
���

 vectors are rotating at the same speed as ( )msB t
����

 - that is, the 

synchronous speed synω .  At a given operating condition with constant values of 

slipω  and ˆ
msB , the bar-current distribution, relative to the peak of the flux-density 

vector, is the same in Fig. 11-8 as in Fig. 11-7.  Therefore, the amplitudes of 

( )rF t
���

 and ( )rF t′
���

 remain constant as they rotate at the synchronous speed. 

 

�  Example 11-2   Consider an induction machine that has 2 poles and is supplied 

by a rated voltage of 208 V (line-to-line, rms) at the frequency of 60 Hz.  It is 

operating in steady state and is loaded to its rated torque.  Neglect the stator 

leakage impedance and the rotor leakage flux.  The per-phase magnetizing current 

is 4.0 A (rms).  The current drawn per-phase is 10 A (rms) and is at an angle of 

23.56 degrees (lagging).  Calculate the per-phase current if the mechanical load 

decreases so that the slip speed is one-half that of the rated case. 

 

Solution     We will consider the phase-a voltage to be the reference phasor.  

Therefore, 

 

208 2
0 169.8 0

3
o o

aV V= ∠ = ∠ .   

 

It is given that at the rated load, as shown in Fig. 11-9a,  

 

4.0 2 90o
maI A= ∠ −  and 10.0 2 23.56o

aI A= ∠ − .   

 

From the phasor diagram in Fig. 11-9a,  

 

aV

aImaI

'raI
o.23 56

aV

aI

maI

'raI
o.41 16

(a) (b) 

Figure 11-9 Example 11-2. 
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9.173 2 0o
raI A′ = ∠ .   

 

At one-half of the slip speed, the magnetizing current is the same but the 

amplitudes of the rotor-bar currents, and hence of raI ′  are reduced by one-half: 

 

4.0 2 90o
maI A= ∠ −  and 4.59 2 0o

raI A′ = ∠ . 

 

Therefore,  

 

6.1 2 41.16o
aI A= ∠ − , as shown in the phasor diagram of Fig. 11-9b.  �  

 

Revisiting the Transformer Analogy   

 

The transformer equivalent circuit in Fig. 11-4b illustrated so that the voltage-

supplied primary winding draws a compensating current to neutralize the effect of 

the secondary winding current in order to ensure that the resultant flux linking the 

primary winding remains the same as under the open-circuited condition.  

Similarly, in an induction motor, the stator neutralizes the rotor-produced field to 

ensure that the resultant flux “cutting” the stator windings remains the same as 

under the rotor open-circuited condition.  In induction machines, this is how the 

stator "keeps track” of what is happening in the rotor.  However, compared to 

transformers, induction machine operation is more complex where the rotor-cage 

quantities are at the slip frequency (discussed below) and are transformed into the 

stator-frequency quantities "seen" from the stator. 

 

11-3-2-2  The Slip Frequency, slipf , in the Rotor Circuit 

 

The frequency of induced voltages (and currents) in the rotor bars can be obtained 

by considering Fig. 11-10a.  At t=0, the bottom-most bar labeled “p” is being 

“cut” by the positive peak flux density and has a positive induced voltage at the 

front-end.  The ( )msB t
����

 space vector, which is rotating with a speed of synω , is 

“pulling ahead” at the slip speed slipω  with respect to the rotor bar “p,” which is 
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rotating at mω .  Therefore, as shown in Fig. 11-10b, at sometime 1t >0, the angle 

between ( )msB t
����

 and the rotor bar “p” is 

 

 1= slip tξ ω         (11-22) 

 

Therefore, the first time (call it 2T π ) when the bar “p” is again being “cut” by the 

positive peak flux density is when 2ζ π= .  Therefore, from Eq. 11-22, 

 

 2

( 2 )

slip

T π
ξ π

ω
==         (11-23) 

 

where 2T π  is the time-period between the two consecutive positive peaks of the 

induced voltage in the rotor bar “p.”  Therefore, the induced voltage in the rotor 

bar has a frequency (which we will call the slip frequency slipf ) which is the 

inverse of 2T π  in Eq. 11-23: 

 

(a) (b)

Figure 11-10 (a) Voltage induced in bar “p” at t = 0 ; (b) voltage induced in bar “p” 

at t = t1  .
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Figure 11-10 (a) Voltage induced in bar “p” at t = 0 ; (b) voltage induced in bar “p” 

at t = t1  .
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2

slip
slipf

ω
π

=         (11-24) 

 

For convenience, we will define a unitless (dimensionless) quantity called slip, s, 

as the ratio of the slip speed to the synchronous speed: 

 

 slip

syn

s
ω
ω

=         (11-25) 

 

Substituting for slipω  from Eq. 11-25 into Eq. 11-24 and noting that 2syn fω π=  

(in a 2-pole machine), 

 

 slipf s f=         (11-26) 

 

In steady state, induction machines operate at mω , very close to their synchronous 

speed, with a slip s of generally less than 0.03 (or 3 percent).  Therefore, in steady 

state, the frequency ( slipf ) of voltages and currents in the rotor circuit is typically 

less than a few Hz.   

 

Note that ( )rF t
���

, which is created by the slip-frequency voltages and currents in 

the rotor circuit, rotates at the slip speed slipω , relative to the rotor.  Since the rotor 

itself is rotating at a speed of mω , the net result is that ( )rF t
���

 rotates at a total 

speed of ( )slip mω ω+ , which is equal to the synchronous speed synω .  This 

confirms what we had concluded earlier about the speed of ( )rF t
���

 by comparing 

Figs. 11-7 and 11-8.   

 

�  Example 11-3   In Example 11-2, the rated speed (while the motor supplies its 

rated torque) is 3475 rpm.  Calculate the slip speed slipω , the slip s , and the slip 

frequency slipf  of the currents and voltages in the rotor circuit. 
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Solution     This is a 2-pole motor.  Therefore, at the rated frequency of 60 Hz, the 

rated synchronous speed, from Eq. 11-8, is  

 

 2 60 377 /syn rad sω ω π= = × = . 

 

The rated speed is ,

2 3475
363.9 /

60m rated rad s
πω ×= = . 

 

Therefore, 

 

 , , , 377.0 363.9 13.1 /slip rated syn rated m rated rad sω ω ω= − = − = . 

 

From Eq. 11-25, 

 

 ,

,

13.1
0.0347 3.47%

377.0
slip rated

rated
syn rated

slip s
ω
ω

= = = =  

 

and, from Eq. 11-26, 

 

 , 2.08slip rated ratedf s f Hz= = .      �  

 

11-3-2-3  Electromagnetic Torque 
 

The electromagnetic torque on the rotor is produced by the interaction of the flux-

density distribution represented by ( )msB t
����

 in Fig. 11-7a and the rotor-bar currents 

producing the mmf ( )rF t
���

.  As in Chapter 10, it will be easier to calculate the 

torque produced on the rotor by first calculating the torque on the stator 

equivalent winding that produces the nullifying mmf ( )rF t′
���

.  At t=0, this 

equivalent stator winding, sinusoidally distributed with sN  turns, has its axis 

along the ( )rF t′
���

 space vector, as shown in Fig. 11-11.  The winding also has a 

current '
r̂I  flowing thorough it.   
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Following the derivation of the electromagnetic torque in Chapter 10, from Eq. 

10-5, 
 

 'ˆ ˆ
2

s
em ms r

N
T r B Iπ= �        (11-27) 

 

The above equation can be written as 
 

'ˆ ˆ
em t ms rT k B I=  (where 

2
s

t

N
k rπ= � )     (11-28) 

 

where tk  is a constant which depends on the machine design.  The torque on the 

stator in Fig. 11-11 acts in a clockwise direction and the torque on the rotor is 

equal in magnitude and acts in a counter-clockwise direction.  

 

The current peak '
r̂I  depends linearly on the flux-density peak ˆ

msB  and the slip 

speed slipω , as expressed by Eq. 11-21 ( 'ˆ ˆ
r i ms slipI k B ω= ).  Therefore, substituting 

for '
r̂I  in Eq. 11-28, 

'rF
����

rF
���

axisa −
'ri

���

at t 0=

�

sv
���

msB
�����

Figure 11-11 Calculation of electromagnetic torque.

'rF
����

rF
���

axisa −
'ri

���

at t 0=

�

sv
���

msB
�����

'rF
����

rF
���

axisa −
'ri

���

at t 0=

�

sv
���

msB
�����

Figure 11-11 Calculation of electromagnetic torque.
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 2ˆ
em t ms slipT k Bω ω=   ( t t ik k kω = )    (11-29) 

 

where tk ω  is a machine torque constant.  If the flux-density peak is maintained at 

its rated value in Eq. 11-29, 

 

 em T slipT k ω ω=    ( 2ˆ
T t msk k Bω ω= )    (11-30) 

 

where Tk ω  is another torque constant of the machine. 

 

Eq. 11-30 expresses the torque-speed characteristic of induction machines.  For a 

rated set of applied voltages, which result in ,syn ratedω  and ,
ˆ

ms ratedB , the torque 

developed by the machine increases linearly with the slip speed slipω  as the rotor 

slows down.  This torque-speed characteristic is shown in Fig. 11-12 in two 

different ways.  At zero torque, the slip speed slipω  is zero, implying that the 

motor rotates at the synchronous speed.  This is only a theoretical operating point 

because the motor’s internal bearing friction and windage losses would require 

that a finite amount of electromagnetic torque be generated to overcome them.  

The torque-speed characteristic beyond the rated torque is shown dotted because 

the assumptions of neglecting stator leakage impedance and the rotor leakage 

inductance begin to breakdown.   

,syn ratedω

mω

,m ratedω

,em ratedT emT0





,slip ratedω

(a) (b)

Figure 11-12  Torque speed characteristic of induction motors.

,syn ratedω mω

,m ratedω

,em ratedT

0
�

,slip ratedω

,syn ratedω

mω

,m ratedω

,em ratedT emT0





,slip ratedω
,syn ratedω

mω

,m ratedω

,em ratedT emT0





,slip ratedω

(a) (b)

Figure 11-12  Torque speed characteristic of induction motors.

,syn ratedω mω

,m ratedω

,em ratedT

0
�

,slip ratedω
,syn ratedω mω

,m ratedω

,em ratedT

0
�

,slip ratedω
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The torque-speed characteristic helps to explain the operating principle of 

induction machines, as illustrated in Fig. 11-13.  In steady state, the operating 

speed 1mω  is dictated by the intersection of the electromagnetic torque and the 

mechanical-load torque 1LT .  If the load torque is increased to 2LT , the induction 

motor slows down to 2mω , increasing the slip speed slipω .  This increased slip 

speed results in higher induced voltages and currents in the rotor bars, and hence a 

higher electromagnetic torque is produced to meet the increase in mechanical load 

torque.  On a dynamic basis, the electromagnetic torque developed by the motor 

interacts with the shaft-coupled mechanical load, in accordance with the 

following mechanical-system equation: 

 

 m em L

eq

d T T

dt J

ω −=        (11-31) 

 

where Jeq is the combined motor-load inertia constant and LT  (generally a 

function of speed) is the torque of the mechanical load opposing the rotation.  The 

acceleration torque is ( )em LT T− . 

 

Note that the electromagnetic torque developed by the motor equals the load 

toque in steady state.  Often, the torque required to overcome friction and 

windage (including that of the motor itself) can be included lumped with the load 

torque. 

 

0

mω

m1ω

m2ω

synω

L1T L2T emT

Figure 11-13 Operation of an induction motor.

0

mω

m1ω

m2ω

synω

L1T L2T emT0

mω

m1ω

m2ω

synω

L1T L2T emT

Figure 11-13 Operation of an induction motor.
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�  Example 11-4   In Example 11-3, the rated torque supplied by the motor is 8 

Nm.  Calculate the torque constant Tk ω , which linearly relates the torque 

developed by the motor to the slip speed. 

 

Solution      

 

From Eq. 11-30, 

 

 em
T

slip

T
k ω ω

= .   

 

Therefore, using the rated conditions,  

 

,

,

8.0
0.61

13.1 /
em rated

T
slip rated

T Nm
k

rad sω ω
= = = . 

 

The torque-speed characteristic is as shown in Fig. 11-12, with the slope given 

above. �  

 

11-3-2-4  The Generator (Regenerative Braking) Mode of Operation 
 

Induction machines can be used as generators, for example many wind-electric 

systems use induction generators to convert wind energy to electrical output 

which is fed into the utility grid.  Most commonly, however, while slowing down, 

induction motors go into regenerative-braking mode (which, from the machine’s 

standpoint, is the same as the generator mode), where the kinetic energy 

associated with the inertia of the mechanical system is converted into electrical 

output.  In this mode of operation, the rotor speed exceeds the synchronous speed 

( m synω ω> ) where both are in the same direction.  Hence, 0slipω < . 

 

Under the condition of negative slip speed shown in Fig. 11-14, the voltages and 

currents induced in the rotor bars are of opposite polarities and directions 

compared to those with positive slip speed in Fig. 11-7a.  Therefore, the 

electromagnetic torque on the rotor acts in a clockwise direction, opposing the 
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rotation and thus slowing down the rotor.  In this regenerative breaking mode, emT  

in Eq. 11-31 has a negative value. 

 

�  Example 11-5   The induction machine of Example 11-2 is to produce the 

rated torque in the regenerative-braking mode.  Draw the voltage and current 

phasors for phase-a. 

 

Solution     With the assumption that the stator leakage impedance can be 

neglected, the magnetizing current is the same as in Example 11-2: 

4.0 2 90o
maI A= ∠ − .  However, since we are dealing with a regenerative-

braking torque, 

 

 9.173 2 0o
raI A′ = − ∠  

 

as shown in the phasor diagram of Fig. 11-15.  Hence, 

 

Figure 11-14  Regenerative braking in induction motors. 

rF
���

'rF
����

mω

synω

axisa −

msB
�����

synω

−

+

aV

aI maI

'raI

Figure 11-15 Example 11-5. 
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10.0 2 156.44o
aI A= ∠ − .      �  

 

11-3-2-5  Reversing the Direction of Rotation 
 

Reversing the sequence of applied voltages (a-b-c to a-c-b) causes the reversal of 

direction, as shown in Fig. 11-16. 

 

11-3-2-6 Including the Rotor Leakage Inductance 
 

Up to the rated torque, the slip speed and the slip frequency in the rotor circuit are 

small, and hence it is reasonable to neglect the effect of the rotor leakage 

inductance.  However, loading the machine beyond the rated torque results in 

larger slip speeds and slip frequencies, and the effect of the rotor leakage 

inductance should be included in the analysis, as described below. 

 

Of all the flux produced by the currents in the rotor bars, a portion (which is 

called the leakage flux and is responsible for the rotor leakage inductance) does 

not completely cross the air gap and does not “cut” the stator windings.  First 

considering only the stator-established flux-density distribution ( )msB t
����

 at 0t =  as 

in Fig. 11-6a, the top and the bottom bars are “cut” by the peak ˆ
msB  of the flux-

density distribution, and due to this flux the voltages induced in them are the 

maximum.  However (as shown in Fig. 11-17a), the bar currents lag due to the 

Figure 11-16 Reversing the direction of rotation in an induction motor.
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Figure 11-16 Reversing the direction of rotation in an induction motor.
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inductive effect of the rotor leakage flux and are maximum in the bars which were 

“cut” by ( )msB t
����

 sometime earlier.  Therefore, the rotor mmf space vector ( )rF t
���

 in 

Fig. 11-17a lags ( )msB t
����

 by an angle 
2 r

π θ+ , where rθ  is called the rotor power 

factor angle. 

 

At 0t = , the flux lines produced by the rotor currents in Fig. 11-17b can be 

divided into two components: , rm iφ , which crosses the air gap and “cuts” the stator 

windings, and rφ� , the rotor leakage flux, which does not cross the air gap to “cut” 

the stator windings. 

rθ

rθ

m si
�����

synω

synω
axisa −

msB
�����

rF
���

'rF
���� ( )sv t

���

at t 0=
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(a) (b)

(c)

Figure 11-17 Space vectors with the effect of rotor leakage flux included.
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Figure 11-17 Space vectors with the effect of rotor leakage flux included.
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The stator excited by ideal voltage sources (and assuming that sR  and lsL  are 

zero) demands that the flux-density distribution ( )msB t
����

 “cutting” it be unchanged.  

Therefore, additional stator currents, represented by ( )ri t′
��

 in Fig. 11-17a, are 

drawn to produce , rm iφ ′  in Fig. 11-17b to compensate for , rm iφ  (but not to 

compensate for rφ� , whose existence the stator is unaware of), such that , rm iφ ′  is 

equal in magnitude and opposite in direction to , rm iφ . 

 

The additional currents drawn from the three stator phase windings can be 

represented by means of the equivalent stator winding with sN  turns and carrying 

a current '
r̂I , as shown in Fig. 11-17b.  The resulting rF

���
, rF ′
���

, and ri′
��

 space vectors 

at t=0 are shown in Fig. 11-17c.  The rotor bars are “cut” by the net flux-density 

distribution represented by ( )rB t
���

, shown in Fig. 11-17c at t=0, where 

 

( ) ( ) ( )r ms rB t B t B t= + �

��� ���� ����
       (11-32) 

 

( )rB t�

����
 represents in the air gap the rotor leakage flux density distribution (due to 

rφ� ) which, for our purposes, is also assumed to be radial and sinusoidally 

distributed.  Note that rB
���

 is not created by the currents in the rotor bars; rather it 

is the flux-density distribution “cutting” the rotor bars. 

 

The equivalent stator winding shown in Fig. 11-17b has a current r̂I ′  and is “cut” 

by the flux-density distribution represented by msB
����

.  As shown in Fig. 11-17c, the 

msB
����

 and ri′
��

 space vectors are at an angle of ( / 2 )rπ θ−  with respect to each other.  

Using a procedure similar to the one which led to the torque expression in Eq. 11-

28, we can show that the torque developed depends on the sine of the angle 

( / 2 )rπ θ−  between msB
����

 and ri′
��

: 

 

 ˆ ˆ sin( )
2em t ms r rT k B I
π θ′= −       (11-33) 
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In the space vector diagram of Fig. 11-17c, 

 

 ˆ ˆsin( )
2ms r rB B
π θ− =        (11-34) 

 

Therefore, in Eq. 11-33, 

 

 ˆ ˆ
em t r rT k B I ′=         (11-35) 

 

The above development suggests how we can achieve vector control of induction 

machines.  In an induction machine, ( )rB t
���

 and ( )ri t′
��

 are naturally at right angles 

(90 degrees) to each other.  (Note in Fig. 11-17b that the rotor bars with the 

maximum current are those “cutting” the peak of the rotor flux-density 

distribution ˆ
rB .)  Therefore, if we can keep the rotor flux-density peak ˆ

rB  

constant, then 

 

 ˆ
em T rT k I ′=  where ˆ

T t rk k B=      (11-36) 

 

The torque developed by the motor can be controlled by r̂I ′ .  This allows 

induction-motor drives to emulate the performance of dc-motor and brushless-dc 

motor drives. 

 

11-3-3 Per-Phase Steady-State Equivalent Circuit (Including Rotor Leakage) 
 

The space vector diagram at t=0 is shown in Fig. 11-18a for the rated voltages 

applied.  This results in the phasor diagram for phase-a in Fig. 11-18b.  The 

current raI ′ , which is lagging behind the applied voltage aV , can be represented as 

flowing through an inductive branch in the equivalent circuit of Fig. 11-18c, 

where eqR  and eqL  are yet to be determined.  For the above determination, assume 

that the rotor is blocked and that the voltages applied to the stator create the same 

conditions ( msB
����

 with the same ˆ
msB  and at the same slipω  with respect to the rotor) 
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in the rotor circuit as in Fig. 11-18.  Therefore, in Fig. 11-19a with the blocked 

rotor, we will apply stator voltages at the slip frequency ( / 2 )slip slipf ω π=  from 

Eq. 11-8 and of amplitude ˆslip

syn

V
ω
ω

 from Eq. 11-7, as shown in Figs. 11-19a and 

11-19b.   

Figure 11-18 Rated voltage applied. 
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-frequency voltages applied. 
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The blocked-rotor bars, similar to those in the rotor turning at mω , are “cut” by an 

identical flux-density distribution (which has the same peak value ˆ
msB  and which 

rotates at the same slip speed slipω  with respect to the rotor).  The phasor diagram 

in the blocked-rotor case is shown in Fig. 11-19b and the phase equivalent circuit 

is shown in Fig. 11-19c.  (The quantities at the stator terminals in the blocked-

rotor case of Fig. 11-19 are similar to those of a transformer primary, with its 

secondary winding short-circuited.)  The current raI ′  in Fig. 11-19c is at the slip 

frequency slipf  and flowing through an inductive branch which consists of rR ′  

and rL ′
�  connected in series.  Note that rR ′  and rL ′

�  are the equivalent rotor 

resistance and the equivalent rotor leakage inductance, “seen” on a per-phase 

basis from the stator side.  The impedance of the inductive branch with raI ′  in this 

blocked-rotor case is 

 

 ,eq blocked r slip rZ R j Lω′ ′= + �       (11-37) 

 

The three-phase power loss in the bar resistances of the blocked rotor is 

 

 2
, 3 ( )r loss r raP R I′ ′=        (11-38) 

 

where raI ′  is the rms value. 

 

As far as the conditions “seen” by an observer sitting on the rotor are concerned, 

they are identical to the original case with the rotor turning at a speed mω  but 

slipping at a speed slipω  with respect to synω .  Therefore, in both cases, the current 

component raI ′  has the same amplitude and the same phase angle with respect to 

the applied voltage.  Therefore, in the original case of Fig. 11-18, where the 
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applied voltages are higher by a factor of syn

slip

ω
ω

, the impedance must be higher by 

the same factor; that is, from Eq. 11-37, 

 

 
�

,

( )

eq blocked slip

syn syn
eq r slip r r syn r

slip slipat f Z at f

Z R j L R j L
ω ω

ω ω
ω ω

′ ′ ′ ′= + = +� ��������
   (11-39) 

 

Therefore, in the equivalent circuit of Fig. 11-18c at frequency f , syn
eq r

slip

R R
ω
ω

′=  

and eq rL L ′= � . 

 

The per-phase equivalent circuit of Fig. 11-18c is repeated in Fig. 11-20a, where 

synω ω=  for a 2-pole machine.  The power loss ,r lossP  in the rotor circuit in Fig. 

11-20a is the same as that given by Eq. 11-38 for the blocked-rotor case of Fig. 

11-19c.  Therefore, the resistance syn
r

slip

R
ω
ω

′  can be divided into two parts: rR ′  and 

m
r

slip

R
ω
ω

′ , as shown in Fig. 11-20b, where ,r lossP  is lost as heat in rR ′  and the 

power dissipation in m
r

slip

R
ω
ω

′ , on a three-phase basis, gets converted into 

mechanical power (which also equals emT  times mω ): 

Figure 11-20 Splitting the rotor resistance into the loss component and power output

component (neglecting the stator-winding leakage impedance).
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 23 ( )m
em r ra em m

slip

P R I T
ω ω
ω

′ ′= =       (11-40) 

 

Therefore, 

 

 
2( )

3 ra
em r

slip

I
T R

ω

′′=        (11-41) 

 

From Eqs. 11-38 and 11-41, 

 

 ,r loss
slip

em

P

T
ω=         (11-42) 

 

This is an important relationship because it shows that to produce the desired 

torque emT  we should minimize the value of the slip speed in order to minimize 

the power loss in the rotor circuit. 

 

�  Example 11-6   Consider a 60-Hz induction motor with 0.45rR′ = Ω  and 

0.85rX ′ = Ω� .  The rated slip speed is 4 percent.  Ignore the stator leakage 

impedance.  Compare the torque at the rated slip speed by (a) ignoring the rotor 

leakage inductance and (b) including the rotor leakage inductance.   

 

Solution     To calculate emT  at the rated slip speed we will make use of Eq. 11-41, 

where raI ′  can be calculated from the per-phase equivalent circuit of Fig. 11-20a.  

Ignoring the rotor leakage inductance, 

 

0r

a
ra L

syn
r

slip

V
I

R
ω
ω

′ =
′ =

′
�

, and from Eq. 11-41 
2

20

3
r

ar
em L

slip syn
r

slip

VR
T

R
ω ω

ω

′ =

′
=

 
′   

�

. 

 

Including the rotor leakage inductance, 
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( )
2

2

a
ra

syn
r r

slip

V
I

R X
ω
ω

′ =
 

′ ′+   
�

, and from Eq. 11-41 

( )

2

2

2

3 ar
em

slip syn
r r

slip

VR
T

R X
ω ω

ω

′
=

 
′ ′+   

�

. 

 

At the rated slip speed of 4%, 0.04slip

syn

ω
ω

= .  Therefore, comparing the above two 

expressions for torque by substituting the numerical values, 

 

 

( )
2

2

2 2
0

2 2
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r
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r r

em slipL

em syn
r

slip

R X
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T
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ω
ω

ω
ω
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 
′ ′+   + = =

 
′   

�

�

� .  �  

 

The above example shows that under normal operation when the motor is 

supplying a torque within its rated value, it does so at very small values of slip 

speed.  Therefore, as shown in this example, we are justified in ignoring the effect 

of the rotor leakage inductance under normal operation.  In high performance 

applications requiring vector control, the effect of the rotor leakage inductance 

can be included, as discussed in Chapter 13.  

 

11-3-3-1 Including the Stator Winding Resistance sR  and the Leakage 

Inductance sL�  

 

Including the effect of the stator winding resistance sR  and the leakage 

inductance sL�  is analogous to including the effect of primary winding impedance 

in the transformer equivalent circuit.  In the per-phase equivalent circuit of Fig. 
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11-21a, the applied voltage aV  is reduced by the voltage drop across the stator-

winding leakage impedance to yield maE : 

 

 ( )ma a s s sE V R j L Iω= − + �       (11-43) 

 

where maE  represents the voltage induced in the stator phase-a by the rotating 

flux-density distribution ( )msB t
����

.  The phasor diagram with maE  as the reference 

phasor is shown in Fig. 11-21b. 

 
11-4 TESTS TO OBTAIN THE PARAMETERS OF THE PER-PHASE 

EQUIVALENT CIRCUIT 

 

The parameters of the per-phase equivalent circuit of Fig. 11-21a are usually not 

supplied by the motor manufacturers.  The three tests described below can be 

performed to estimate these parameters. 

 

11-4-1  DC-Resistance Test to Estimate sR  

 

The stator resistance sR  can best be estimated by the dc measurement of the 

resistance between the two phases: 

 

 ( )
2

phase phase
s

R
R dc −=        (11-44) 

 

Figure 11-21 (a) Per phase, steady state equivalent circuit including the stator leakage; 
(b) phasor diagram. 
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This dc resistance value, measured by passing a dc current through two of the 

phases, can be modified by a skin-effect factor [1] to help estimate its line-

frequency value more closely.   

 

11-4-2  The No-Load Test to Estimate mL  

 

The magnetizing inductance mL  can be calculated from the no-load test.  In this 

test, the motor is applied its rated stator voltages in steady state and no 

mechanical load is connected to the rotor shaft.  Therefore, the rotor turns almost 

at the synchronous speed with 0slipω ≅ .  Hence, the resistance ' syn
r

slip

R
ω
ω

 in the 

equivalent circuit of Fig. 11-21a becomes very large, allowing us to assume that 
' 0raI ≅ , as shown in Fig. 11-22a.  The following quantities are measured: the per-

phase rms voltage ( / 3)a LLV V= , the per-phase rms current aI , and the three-

phase power 3P φ−  drawn by the motor.  Subtracting the calculated power 

dissipation in sR  from the measured power, the remaining power ,FW coreP  (the 

sum of the core losses, the stray losses, and the power to overcome friction and 

windage) is 

 

 2
, 3 3FW core s aP P R Iφ−= −        (11-45) 

 

With rated voltages applied to the motor, the above loss can be assumed to be a 

constant value which is independent of the motor loading.  

 

Figure 11-22  No Load Test of an induction motor; (b) blocked rotor test on an 
induction motor.
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Figure 11-22  No Load Test of an induction motor; (b) blocked rotor test on an 
induction motor.
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Assuming that mL >> sL� , the magnetizing inductance mL  can be calculated based 

on the per-phase reactive power Q  from the following equation: 

 

 32 2 2( ) ( ) ( )
3a a m a

P
Q V I L Iφ ω−= − =      (11-46) 

 

11-4-3  Blocked-Rotor Test to Estimate '
rR  and the Leakage Inductances 

 

The blocked-rotor (or locked-rotor) test is conducted to determine both '
rR , the 

rotor resistance “seen” from the stator on a per-phase basis, and the leakage 

inductances in the equivalent circuit of Fig. 11-21a.  Note that the rotor is blocked 

from turning and the stator is applied line-frequency, 3-phase voltages with a 

small magnitude such that the stator currents equal their rated value.  With the 

rotor blocked, 0mω =  and hence 1syn

slip

ω
ω

= .  The resulting equivalent impedance 

( )' '
r rR j Lω+ �  in Fig. 11-22b can be assumed to be much smaller than the 

magnetizing reactance ( mj Lω ), which can be considered to be infinite.  

Therefore, by measuring ,a aV I , and the three-phase power into the motor, we can 

calculate '
rR  (having already estimated sR  previously) and '( )s rL L+� � .  In order to 

determine these two leakage inductances explicitly, we need to know their ratio, 

which depends on the design of the machine.  As an approximation for general-

purpose motors, we can assume that 

 

 '2

3s rL L≅� �         (11-47) 

 

This allows both leakage inductances to be calculated explicitly. 
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11-5 INDUCTION MOTOR CHARACTERISTICS AT RATED 
VOLTAGES IN MAGNITUDE AND FREQUENCY 

 

The typical torque-speed characteristic for general-purpose induction motors with 

name-plate (rated) values of applied voltages is shown in Fig. 11-23a, where the 

normalized torque (as a ratio of its rated value) is plotted as a function of the rotor 

speed /m synω ω . 

 

With no load connected to the shaft, the torque emT  demanded from the motor is 

very low (only enough to overcome the internal bearing friction and windage) and 

the rotor turns at a speed very close in value to the synchronous speed synω .  Up to 

the rated torque, the torque developed by the motor is linear with respect to slipω , 

a relationship given by Eq. 11-30.  Far beyond the rated condition, for which the 

machine is designed to operate in steady state, emT  no longer increases linearly 

with slipω  for the following reasons:  

 

1) The effect of leakage inductance in the rotor circuit at a higher frequency 

can no longer be ignored, and, from Eq. 11-33, the torque is less due to the 

declining value of sin( / 2 )rπ θ− . 

 

2) Large values of '
raI  and hence of aI  cause a significant voltage drop across 
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Figure 11-23 (a) Torque-speed characteristic; 
(b) current-speed characteristic. 
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the stator winding leakage impedance ( )s sR j Lω+ �
.  This voltage drop 

causes maE  to decrease, which in turn decreases ˆ
msB .   

 

The above effects take place simultaneously, and the resulting torque 

characteristic for large values of slipω  (which are avoided in the induction-motor 

drives discussed in the next chapter) is shown dotted in Fig. 11-23a.  The rated 

value of the slip-speed slipω  at which the motor develops its rated torque is 

typically in a range of 0.03 to 0.05 times the synchronous speed synω . 

 

In the torque-speed characteristic of Fig. 11-23a, the maximum torque that the 

motor can produce is called the pull-out (breakdown) torque.  The torque when 

the rotor speed is zero is called the starting torque.  The values of the pull-out and 

the starting torques, as a ratio of the rated torque, depend on the design class of 

the motor, as discussed in the next section. 

 

Figure 11-23b shows the plot of the normalized rms current '
raI  as a function of 

the rotor speed.  Up to the rated slip speed (up to the rated torque), '
raI  is linear 

with respect to the slip speed.  This can be seen from Eq. 11-21 (with 

,
ˆ ˆ

ms ms ratedB B= ): 

 '
,

ˆ ˆ( )r i ms rated slipI k B ω=        (11-48) 

Hence, 

 '
ra I slipI k ω=    ( ,

1 2 ˆ
32

I i ms ratedk k B= )   (11-49) 

 

where Ik  is a constant which linearly relates the slip speed to the rms current '
raI .  

Notice that this plot is linear up to the rated slip speed, beyond which the effects 

of the stator and the rotor leakage inductances come into effect.  At the rated 

operating point, the value of the rms magnetizing current maI  is typically in a 

range of 20 to 40 percent of the per-phase stator rms current aI .  The magnetizing 

current maI  remains relatively constant with speed, decreasing slightly at very 

large values of slipω .  At or below the rated torque, the per-phase stator current 
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magnitude aI  can be calculated by assuming the '
raI  and maI  phasors to be at 090  

with respect to each other; thus 

 

 
2' 2

a ra maI I I≅ +   (below the rated torque)  (11-50) 

 

While delivering a torque higher than the rated torque, '
raI  is much larger in 

magnitude than the magnetizing current maI  (also considering a large phase shift 

between the two).  This allows the stator current to be approximated as follows: 

 

 '
a raI I≅    (above the rated torque)  (11-51) 

 

Fig. 11-24 shows the typical variations of the power factor and the motor 

efficiency as a function of motor loading.  These curves depend on the class and 

size of the motor and are discussed in Chapter 15, which deals with efficiency. 

 

Figure 11-24 Typical performance curves for Design B 10-kW, 4-pole, three-phase 
induction motor. 
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11-6 INDUCTION MOTORS OF NEMA DESIGN A, B, C, AND D 
 

Three-phase induction machines are classified in the American Standards 

(NEMA) under five design letters: A, B, C, D, and F.  Each design class of motors 

has different torque and current specifications.  Figure 11-25 illustrates typical 

torque-speed curves for design A, B, C and D motors; Design F motors have low 

pull-out and starting torques and thus are very limited in applications.  As a ratio 

of the rated quantities, each design class specifies minimum values of pull-out and 

starting torques, and a maximum value of the starting current.   

 

As noted previously, Design Class B motors are used most widely for general-

purpose applications.  These motors must have a minimum of a 200 percent pull-

out torque. 

 

Design A motors are similar to the general-purpose Design B motors except that 

they have a somewhat higher pull-out (breakdown) torque and a smaller full-load 

slip.  Design A motors are used when unusually low values of winding losses are 

required - in totally enclosed motors, for example. 

 

Design C motors are high starting-torque, low starting-current machines.  They 

also have a somewhat lower pull-out (breakdown) torque than Design A and B 

machines.  Design C motors are almost always designed with double-cage rotor 

windings to enhance the rotor-winding skin effect. 

 

Figure 11-25 Typical torque-speed curves for NEMA Design A, B, C, D motors. 
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Finally, Design D motors are high starting-torque, high-slip machines.  The 

minimum starting torque is 275 percent of the rated torque.  The starting torque in 

these motors can be assumed to be the same as the pull-out torque. 

 

11-7 LINE START 
 

It should be noted that the induction-motor drives, discussed in detail in the next 

chapter, are operated so as to keep slipω  at low values.  Hence, the dotted portions 

of the characteristics shown in Fig. 11-23 are of no significance.  However, if an 

induction motor is started from the line-voltage supply without an electronic 

power converter, it would at first draw 6 to 8 times its rated current, as shown in 

Fig. 11-23b, limited mainly by the leakage inductances.  Fig. 11-26 shows that the 

available acceleration torque ( )acc em LT T T= −  causes the motor to accelerate from 

standstill, in accordance with Eq. 11-31.  In Fig. 11-26, an arbitrary torque-speed 

characteristic of the load is assumed and the intersection of the motor and the load 

characteristics determines the steady-state point of operation. 

 

11-8 REDUCED VOLTAGE STARTING ("SOFT START") OF 
INDUCTION MOTORS 
 

The circuit of Fig. 11-27a can be used to reduce the motor voltages at starting, 

thereby reducing the starting currents.  The motor voltage and current waveforms 

are shown in Fig. 11-27b.  In normal (low-slip) induction motors, the starting 

currents can be as large as 6 to 8 times the full-load current.  Provided that the 

Figure 11-26 Available acceleration torque during motor start-up.
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torque developed at reduced voltages is sufficient to overcome the load torque, 

the motor accelerates (the slip speed slipω  decreases) and the motor currents 

decrease.  During steady-state operation, each thyristor conducts for an entire 

half-cycle.  Then, these thyristors can be shorted out (bypassed) by mechanical 

contactors, connected in parallel, to eliminate power losses in the thyristors due to 

a finite (1-2 V) conduction voltage drop across them. 

 
11-9 ENERGY-SAVINGS IN LIGHTLY-LOADED MACHINES 

 

The circuit of Fig. 11-27a can also be used to minimize motor core losses in very 

lightly-loaded machines.  Induction motors are designed such that it is most 

efficient to apply rated voltages at the full-load condition.  With line-frequency 

voltages, the magnitude of the stator voltage at which the power loss is minimized 

slightly decreases with a decreasing load.  Therefore, it is possible to use the 

circuit of Fig. 11-27a to reduce the applied voltages at reduced loads and hence 

save energy.  The amount of energy saved is significant (compared to extra losses 

in the motor due to current harmonics and in the thyristors due to a finite 

conduction voltage drop) only if the motor operates at very light loads for 

substantial periods of time.  In applications where reduced voltage starting (“soft 

start”) is required, the power switches are already implemented and only the 

controller for the minimum power loss needs to be added.  In such cases, the 

concept of reducing the voltage may be economical. 

(a) (b)
Figure 11-27 Stator voltage control (a) circuit (b) waveforms.
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Figure 11-27 Stator voltage control (a) circuit (b) waveforms.
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SUMMARY/REVIEW QUESTIONS 
 

1. Describe the construction of squirrel-cage induction machines. 

2. With the rated voltages applied, what does the magnetizing current depend 

on?  Does this current, to a significant extent, depend on the mechanical load 

on the motor?  How large is it in relation to the rated motor current? 

3. Draw the space vector diagram at t=0, and the corresponding phasor diagram, 

assuming the rotor to be open-circuited. 

4. Under a balanced, three-phase, sinusoidal steady state excitation, what is the 

speed of the rotating flux-density distribution called?  How is this speed 

related to the angular frequency of the electrical excitation in a p-pole 

machine? 

5. In our analysis, why did we initially assume the stator leakage impedance to 

be zero?  How does the analogy to a transformer, with the primary winding 

leakage impedance assumed to be zero, help?  Under the assumption that the 

stator leakage impedance is zero, is the flux-density space vector ( )msB t
����

 

completely independent of the motor loading? 

6. What is the definition of the slip speed slipω ?  Does slipω depend on the 

number of poles?  How large is the rated slip speed, compared to the rated 

synchronous speed? 

7. Write the expressions for the voltage and the current (assuming the rotor 

leakage inductance to be zero) in a rotor bar located at an angle θ  from the 

peak of the flux-density distribution represented by msB
����

. 

8. The rotor bars located around the periphery of the rotor are of uniform cross-

section.  In spite of this, what allows us to represent the mmf produced by the 

rotor bar currents by a space vector ( )rF t
���

 at any time t? 

9. Assuming the stator leakage impedance and the rotor inductance to be zero, 

draw the space vector diagram, the phasor diagram, and the per-phase 

equivalent circuit of a loaded induction motor. 

10. In the equivalent circuit of Problem 9, what quantities does the rotor-bar 

current peak, represented by r̂aI ′ , depend on? 
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11. What is the frequency of voltages and currents in the rotor circuit called? How 

is it related to the slip speed? Does it depend on the number of poles? 

12. What is definition of slip s, and how does it relate the frequency of voltages 

and currents in the stator circuit to that in the rotor circuit? 

13. What is the speed of rotation of the mmf distribution produced by the rotor bar 

currents: (a) with respect to the rotor? (b) in the air gap with respect to a 

stationary observer? 

14. Assuming rL′
�  to be zero, what is the expression for the torque emT  produced?  

How and why does it depend on slipω  and ˆ
msB ?  Draw the torque-speed 

characteristic. 

15. Assuming rL′
�  to be zero, explain how induction motors meet load-torque 

demand. 

16. What makes an induction machine go into the regenerative-braking mode?  

Draw the space vectors and the corresponding phasors under the regenerative-

braking condition. 

17. Can an induction machine be operated as a generator that feeds into a passive 

load, for example a bank of three-phase resistors? 

18. How is it possible to reverse the direction of rotation of an induction machine? 

19. Explain the effect of including the rotor leakage flux by means of a space 

vector diagram. 

20. How do we derive the torque expression, including the effect of rL′
� ? 

21. What is ( )rB t
���

 and how does it differ from ( )msB t
����

?  Is ( )rB t
���

 perpendicular to 

the ( )rF t
���

 space vector? 

22. Including the rotor leakage flux, which rotor bars have the highest currents at 

any instant of time? 

23. What clue do we have for the vector control of induction machines, to emulate 

the performance of brush-type and brush-less dc motors discussed in Chapters 

7 and 10? 

24. Describe how to obtain the per-phase equivalent circuit, including the effect of 

the rotor leakage flux. 

25. What is the difference between raI ′  in Fig. 11-18c and in Fig. 11-19c, in terms 

of its frequency, magnitude, and phase angle? 
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26. Is the torque expression in Eq. 11-41 valid in the presence of the rotor leakage 

inductance and the stator leakage impedance? 

27. When producing a desired torque emT , what is the power loss in the rotor 

circuit proportional to? 

28. Draw the per-phase equivalent circuit, including the stator leakage impedance. 

29. Describe the tests and the procedure to obtain the parameters of the per-phase 

equivalent circuit. 

30. In steady state, how is the mechanical torque at the shaft different than the 

electromechanical torque emT  developed by the machine? 

31. Do induction machines have voltage and torque constants similar to other 

machines that we have studied so far?  If so, write their expressions. 

32. Plot the torque-speed characteristic of an induction motor for applied rated 

voltages.  Describe various portions of this characteristic. 

33. What are the various classes of induction machines?  Briefly describe their 

differences. 

34. What are the problems associated with the line-starting of induction motors?  

Why is the starting current so high? 

35. Why is reduced-voltage starting used?  Show the circuit implementation and 

discuss the pros and cons of using it to save energy. 
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PROBLEMS 
 

11-1 Consider a three-phase, 2-pole induction machine.  Neglect the stator 

winding resistance and the leakage inductance.  The rated voltage is 208 V 

(line-line, rms) at 60 Hz.  60mL mH= , and the peak flux density in the air 
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gap is 0.85T .  Consider that the phase-a voltage reaches its positive peak 

at 0tω = .  Assuming that the rotor circuit is somehow open-circuited, 

calculate and draw the following space vectors at 0tω =  and at 60otω = : 

sv
��

, msi
���

, and msB
����

.  Draw the phasor diagram with aV  and maI .  What is the 

relationship between ˆ
msB , m̂sI , and m̂I ? 

11-2 Calculate the synchronous speed in machines with a rated frequency of 60 

Hz and with the following number of poles p: 2, 4, 6, 8, and 12. 

11-3 The machines in Problem 11-2 produce the rated torque at a slip s = 4 

percent, when supplied with rated voltages.  Under the rated torque 

condition, calculate in each case the slip speed slipω  in rad/s and the 

frequency slipf  (in Hz) of the currents and voltages in the rotor circuit. 

11-4 In the transformer of Fig. 11-4a, each air gap has a length 1.0g mm=� .  

The core iron can be assumed to have an infinite permeability.  1 100N =  

turns and 2 50N =  turns.  In the air gap, ˆ 1.1gB T=  and 

1( ) 100 2 cosv t tω=  at a frequency of 60 Hz.  The leakage impedance of 

the primary winding can be neglected.  With the secondary winding open-

circuited, calculate and plot ( )mi t , ( )m tφ , and the induced voltage 2 ( )e t  in 

the secondary winding due to ( )m tφ , along with 1( )v t . 

11-5 In Example 11-1, calculate the magnetizing inductance mL . 

11-6 In an induction machine, the torque constant Tk ω  (in Eq. 11-30) and the 

rotor resistance rR′  are specified.  Calculate r̂I ′  as a function of slipω , in 

terms of Tk ω  and rR′ , for torques below the rated value.  Assume that the 

flux-density in the air gap is at its rated value.  Hint: use Eq. 11-41. 

11-7 An induction motor produces rated torque at a slip speed of 100 rpm.  If a 

new machine is built with bars of a material that has twice the resistivity 

of the old machine (and nothing else is changed), calculate the slip speed 

in the new machine when it is loaded to the rated torque. 

11-8 In the transformer circuit of Fig. 11-4b, the load on the secondary winding 

is a pure resistance LR .  Show that the emf induced in the secondary 

winding (due to the time-derivative of the combination of mφ  and the 
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secondary-winding leakage flux) is in phase with the secondary current 2i .  

Note: this is analogous to the induction-motor case, where the rotor 

leakage flux is included and the current is maximum in the bar which is 

“cut” by ˆ
rB , the peak of the rotor flux-density distribution (represented by 

rB
���

). 

11-9 In a 60-Hz, 208 V (line-line, rms), 5-kW motor, 0.45rR′ = Ω  and 

0.83rX ′ = Ω� .  The rated torque is developed at the slip 0.04s = .  

Assuming that the motor is supplied with rated voltages and is delivering 

the rated torque, calculate the rotor power factor angle.  What is ˆ ˆ/r msB B ? 

11-10 In a 2-pole, 208 V (line-to-line, rms), 60-Hz, motor, 0.5sR = Ω , 

0.45rR′ = Ω , 0.6sX = Ω� , and 0.83rX ′ = Ω� .  The magnetizing reactance 

28.5mX = Ω .  This motor is supplied by its rated voltages.  The rated 

torque is developed at the slip 0.04s = .  At the rated torque, calculate the 

rotor power loss, the input current, and the input power factor of 

operation. 

11-11 In a 208-V (line-to-line, rms), 60-Hz, 5-kW motor, tests are carried out 

with the following results: 1.1phase phaseR − = Ω .  No-Load Test: applied 

voltages of 208 V (line-line, rms), 6.5aI A= , and ,3 175no load phaseP W− − = .  

Blocked-Rotor Test: applied voltages of 53 V (line-line, rms), 18.2aI A= , 

and ,3 900blocked phaseP W− = .  Estimate the per-phase equivalent circuit 

parameters. 
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CHAPTER  12 
 

INDUCTION-MOTOR 
DRIVES: SPEED CONTROL 
 
 

12-1 INTRODUCTION 

 

Induction-motor drives are used in the process-control industry to adjust the 

speeds of fans, compressors, pumps and the like.  In many applications, the 

capability to vary speed efficiently can lead to large savings in energy.  

Adjustable-speed induction-motor drives are also used for electric traction, and 

for motion control to automate factories. 

 

Figure 12-1 shows the block diagram of an adjustable-speed induction-motor 

drive.  The utility input can be either single-phase or three-phase.  It is converted 

by the power-processing unit into three-phase voltages of appropriate magnitude 

and frequency, based on the controller input.  In most general-purpose adjustable-

speed drives (ASDs), the speed is not sensed and hence the speed-sensor block 

and its input to the controller are shown dotted.   

 

It is possible to adjust the induction-motor speed by controlling only the 

magnitude of the line-frequency voltages applied to the motor.  For this purpose, a 

thyristor circuit, similar to that for "soft-start" in Fig. 11-27a, can be used.  

Figure 12-1 Block diagram of an induction-motor drive. 

SensorLoad

speed
control
input

PPU Induction 
  motor

Controller
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Although simple and inexpensive to implement, this method is extremely energy-

inefficient if the speed is to be varied over a wide range.  Also, there are various 

other methods of speed control, but they require wound-rotor induction motors.  

Their description can be found in references listed at the end of Chapter 11.  Our 

focus in this chapter is on examining energy-efficient speed control of squirrel-

cage induction motors over a wide range.  The emphasis is on general-purpose 

speed control rather than precise control of position using vector control, which is 

discussed in Chapter 13. 
 

12-2 CONDITIONS FOR EFFICIENT SPEED CONTROL OVER A WIDE 
RANGE 

 

In the block diagram of the induction-motor drive shown in Fig. 12-1, we find 

that an energy-efficient system requires that both the power-processing unit and 

the induction motor maintain high energy efficiency over a wide range of speed 

and torque conditions.  In Chapter 4, it was shown that the switch-mode 

techniques result in very high efficiencies of the power-processing units.  

Therefore, the focus in this section will be on achieving high efficiency of 

induction motors over a wide range of speed and torque. 

 

We will begin this discussion by first considering the case in which an induction 

motor is applied the rated voltages (line-frequency sinusoidal voltages of the rated 

amplitude r̂atedV  and the rated frequency ratedf , which are the same as the name-

plate values).  In Chapter 11, we derived the following expressions for a line-fed 

induction motor: 

 

 ,r loss
slip

em

P

T
ω=    (Eq. 11-42, repeated)   (12-1) 

and 

 2ˆ
em t ms slipT k Bω ω=   (Eq. 11-29, repeated)   (12-2) 

 

Eq. 12-1 shows that to meet the load-torque demand ( em LT T= ), the motor should 

be operated with as small a slip speed slipω  as possible in order to minimize power 

loss in the rotor circuit (this also minimizes the loss in the stator resistance).  Eq. 

12-2 can be written as 
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2ˆ

em
slip

t ms

T

k Bω

ω =         (12-3) 

 

This shows that to minimize slipω  at the required torque, the peak flux density ˆ
msB  

should be kept as high as possible, the highest value being ,
ˆ

ms ratedB , for which the 

motor is designed and beyond which the iron in the motor will become saturated.  

(For additional discussion, please see Section 12-9.)  Therefore, keeping ˆ
msB  

constant at its rated value, the electromagnetic torque developed by the motor 

depends linearly on the slip speed slipω : 

 

 em T slipT k ω ω=    ( 2
,

ˆ
T t ms ratedk k Bω ω= )   (12-4) 

 

This is the similar to Eq. 11-30 of the previous chapter.   

 

Applying rated voltages (of amplitude r̂atedV  and frequency ratedf ), the resulting 

torque-speed characteristic based on Eq. 12-4 is shown in Fig. 12-2a, repeated 

from Fig. 11-12a.  The synchronous speed is ,syn ratedω .  This characteristic is a 

straight line based on the assumption that the flux-density peak is maintained at 

its rated value ,
ˆ

ms ratedB  throughout the torque range up to ,em ratedT .  As shown in 

Fig. 12-2a, a family of such characteristics corresponding to various frequencies 

3 2 1 ratedf f f f< < <  can be achieved (assuming that the flux-density peak is 

maintained throughout at its rated value ,
ˆ

ms ratedB , as discussed in the next section).  

Focusing on the frequency 1f  corresponding to one of the characteristics in Fig. 

12-2a, the synchronous speed at which the flux-density distribution in the air gap 

rotates is given by  

 

1
,1

2

/ 2syn

f

p

πω =         (12-5) 
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Therefore, at a rotor speed ,1( )m synω ω< , the slip speed, measured with respect to 

the synchronous speed ,1synω , is 

 

,1 ,1slip syn mω ω ω= −        (12-6) 

 

Using the above ,1slipω  in Eq. 12-4, the torque-speed characteristic at 1f  has the 

same slope as at ratedf .  This shows that the characteristics at various frequencies 

are parallel to each other, as shown in Fig. 12-2a.  Considering a load whose 

torque requirement remains independent of speed, as shown by the dotted line in 

Fig. 12-2b, the speed can be adjusted by controlling the frequency of the applied 

voltages; for example, the speed is ,1 ,1 ,1( )m syn slipω ω ω= −  at a frequency of f1, and 

,2 ,2 ,2( )m syn slipω ω ω= −  at 2f . 

 

�  Example 12-1   A three-phase, 60-Hz, 4-pole, 440-V (line-line, rms) induction-

motor drive has a full-load (rated) speed of 1746 rpm.  The rated torque is 40 Nm.  

Keeping the air gap flux-density peak constant at its rated value, (a) plot the 

torque-speed characteristics (the linear portion) for the following values of the 

frequency f : 60 Hz, 45 Hz, 30 Hz, and 15 Hz.  (b) This motor is supplying a load 

whose torque demand increases linearly with speed, such that it equals the rated 

torque of the motor at the rated motor speed.  Calculate the speeds of operation at 

the four values of frequency in part (a). 

(a) (b) 

Figure 12-2 Operating characteristics with constant                         .  � �
,B Bms ms rated=

ω m

Tem

f1

f2

f3

ω syn rated,

ωslip,1

frated

ω syn ,1

0

ω m

Tem

f1

f2

f3

Load Torque
  (constant)

ω slip rated,

ω slip ,2

ωslip,1

ω m2

ω m1

frated

ω syn ,1
ω m rated,

0

{

{

{
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Solution 

 

(a) In this example, it is easier to make use of speed (denoted by the symbol 

“n”) in rpm.  At the rated frequency of 60 Hz, the synchronous speed in a 4-pole 

motor can be calculated as follows:  from Eq. 12-5, 

 

,

2

/ 2
rated

syn rated

f

p

πω = . 

 

Therefore, 

 

,
,

rev. per sec.

60 60
2 / 2

1800 .

syn rated rated
syn rated

f
n rpm rpm

p

rpm

ω
π

= × = ×

=

�����  

Therefore, 

 

 , 1800 1746 54 .slip ratedn rpm= − =  

 

The synchronous speeds corresponding to the other three frequency values are: 

1350 rpm at 45 Hz, 900 rpm at 30 Hz, and 450 rpm at 15 Hz.  The torque-speed 

characteristics are parallel, as shown in Fig. 12-3, for the four frequency values, 

keeping ,
ˆ ˆ

ms ms ratedB B= . 

 

(b) The torque-speed characteristic in Fig. 12-3 can be described for each 

frequency by the equation below, where synn  is the synchronous speed 

corresponding to that frequency: 

 

 ( )em Tn syn mT k n n= − .       (12-7) 

In this example, 
40

0.74
(1800 1746)Tn

Nm Nm
k

rpm rpm
= =

−
. 

 

The linear load torque-speed characteristic can be described as 
 

 L n mT c n=         (12-8) 
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where, in this example, 
40

0.023
1746n

Nm Nm
c

rpm rpm
= = . 

 

In steady state, the electromagnetic torque developed by the motor equals the load 

toque.  Therefore, equating the right sides of Eqs. 12-7 and 12-8, 
 

  ( ) .Tn syn m n mk n n c n− =       (12-9) 

Hence, 

  

0.97   (in this example).

Tn
m syn

Tn n

syn

k
n n

k c

n

=
+

=
              (12-10) 

 

Therefore, we have the following speeds and slip speeds at various values of f : 
 

f  (Hz) 
synn  (rpm) mn  (rpm) slipn  (rpm) 

60 1800 1746 54 

45 1350 1309.5 40.5 

30 900 873 27 

15 450 436.5 13.5 

          �  

12-3 APPLIED VOLTAGE AMPLITUDES TO KEEP ,
ˆ ˆ

ms ms ratedB B=  

Maintaining ˆ
msB  at its rated value minimizes power loss in the rotor circuit.  To 

maintain ,
ˆ

ms ratedB  at various frequencies and torque loading, the applied voltages 

should be of the appropriate amplitude, as discussed in this section. 

( )mn rpm

.40 0
0

.436 5
450

873
900

.1309 5
1350

1746

1800

( )emT Nm

Figure 12-3 Example 12-1.

Load
characteristic

( )mn rpm

.40 0
0

.436 5
450

873
900

.1309 5
1350

1746

1800

( )emT Nm

Figure 12-3 Example 12-1.

Load
characteristic
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 The per-phase equivalent circuit of an induction motor under the balanced 

sinusoidal steady state is shown in Fig. 12-4a.  With the rated voltages at ,â ratedV  

and ratedf  applied to the stator, loading the motor by its rated (full-load) torque 

,em ratedT  establishes the rated operating point.  At the rated operating point, all 

quantities related to the motor are at their rated values: the synchronous speed 

,syn ratedω , the motor speed ,m ratedω , the slip speed ,slip ratedω , the flux-density peak 

,
ˆ

ms ratedB , the internal voltage ,
ˆ

ma ratedE , the magnetizing current ,
ˆ
ma ratedI , the rotor-

branch current '
,r̂a ratedI , and the stator current ,â ratedI . 

 

The objective of maintaining the flux density at ,
ˆ

ms ratedB  implies that in the 

equivalent circuit of Fig. 12-4a, the magnetizing current should be maintained at 

,
ˆ
ma ratedI : 

 

 ,
ˆ ˆ (a constant)ma ma ratedI I=                 (12-11) 

 

(a)

Figure 12-4 (a) Per phase equivalent circuit in balanced sinusoidal steady state;
(b) equivalent circuit with the rotor leakage neglected; (c)  phasor diagram during
steady state operation at the rated flux density.

(b)
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ˆ
s raR I ′
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(a)

Figure 12-4 (a) Per phase equivalent circuit in balanced sinusoidal steady state;
(b) equivalent circuit with the rotor leakage neglected; (c)  phasor diagram during
steady state operation at the rated flux density.

(b)

syn
R

r
slip

ω

ω
′

j L
m

ω
maE

+

−

lsj LωsR
lrj Lω ′

aV

+

−

aI

maI
raI ′

(c)

syn
R

r
slip

ω

ω
′

j L
m

ω
maE

+

−

lsj LωsR

aV

+

−

aI

maI
raI ′

�

,
ˆ

ls ma ratedL Iω

,
ˆ

s ma ratedR I

ˆ
s raR I ′

ˆ
ls raL Iω ′

aV

,ma ratedI
raI ′ reference�

maE



 12-8 

With this magnetizing current, the internal voltage maE  in Fig. 12-4a has the 

following amplitude: 

 

 , ,

constant

ˆ ˆ ˆ2ma m ma rated m ma ratedE L I L I fω π= =
�����

               (12-12) 

 

This shows that ˆ
maE  is linearly proportional to the frequency f of the applied 

voltages. 

 

For torques below the rated value, the leakage inductance of the rotor can be 

neglected (see Example 11-6), as shown in the equivalent circuit of Fig. 12-4b.  

With this assumption, the rotor-branch current '
raI  is in phase with the internal 

voltage maE , and its amplitude '
r̂aI  depends linearly on the electromagnetic torque 

developed by the motor (as in Eq. 11-28) to provide the load torque.  Therefore, 

in terms of the rated values, 

 

 ' '
,

,

ˆ ˆ( )em
ra ra rated

em rated

T
I I

T
=                  (12-13) 

 

At some frequency and torque, the phasor diagram corresponding to the 

equivalent circuit in Fig. 12-4b is shown in Fig. 12-4c.  If the internal emf is the 

reference phasor 0ˆ 0ma maE E= ∠ , then ' ' 0ˆ 0ra raI I= ∠  and the applied voltage is 

 

 0ˆ 0 ( 2 )a ma s s sV E R j f L Iπ= ∠ + + �                (12-14) 

where 

 ' 0
,

ˆ ˆ0s ra ma ratedI I j I= ∠ −                  (12-15) 

 

Substituting Eq. 12-15 into Eq. 12-14 and separating the real and imaginary parts, 

 

 ( ), ,
ˆ ˆ ˆ ˆ ˆ[ (2 ) ] [ 2 ]a ma s ma rated s ra s ra s ma ratedV E f L I R I j fL I R Iπ π′ ′= + + + −� �     (12-16) 
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These phasors are plotted in Fig. 12-4c near the rated operating condition, using 

reasonable parameter values.  This phasor diagram shows that in determining the 

magnitude âV of the applied voltage phasor aV , the perpendicular component in 

Eq. 12-16 can be neglected, yielding 

 

 ,
ˆ ˆ ˆ ˆ(2 )a ma s ma rated s raV E f L I R Iπ ′≅ + +�                (12-17) 

 

Substituting for ˆ
maE  from Eq. 12-12 into Eq. 12-17 and rearranging terms, 

 

 ,

constant slope

ˆ ˆ ˆ2 ( )a m s ma rated s raV L L I f R Iπ ′= + +����������
     or   ˆ ˆ( )a s raV slope f R I ′= +        (12-18) 

 

This shows that to maintain flux density at its rated value, the applied voltage 

amplitude âV  depends linearly on the frequency f of the applied voltages, except 

for the offset due to the resistance sR  of the stator windings.  At a constant torque 

value, the relationship in Eq. 12-18 between âV  and f  is a straight line, as shown 

in Fig. 12-5.  This line has a constant slope equal to ,
ˆ2 ( )m s ma ratedL L Iπ + � .  This 

slope can be obtained by using the values at the rated operating point of the motor 

in Eq. 12-18: 

 

 , ,
ˆ ˆ
a rated s ra rated

rated

V R I
slope

f

′−
=                 (12-19) 

 

Therefore, in terms of the slope in Eq. 12-19, the relationship in Eq. 12-18 can be 

expressed as 

 

 , ,
ˆ ˆ

ˆ ˆ( )a rated s ra rated
a s ra

rated

V R I
V f R I

f

′−
′= +                (12-20) 

At the rated torque, in Eq. 12-20, âV , r̂aI ′ , and f  are all at their rated values.  This 

establishes the rated point in Fig. 12-5.  Continuing to provide the rated torque, as 

the frequency f  is reduced to nearly zero at very low speeds, from Eq. 12-20, 
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,

,
, 0

ˆ ˆ
em rated

a s ra rated
T f

V R I ′=
�

                (12-21) 

 

This is shown by the offset above the origin in Fig. 12-5.  Between this offset 

point (at 0f � ) and the rated point, the voltage-frequency characteristic is linear, 

as shown, while the motor is loaded to deliver its rated torque.  We will consider 

another case of no-load connected to the motor, where ˆ 0raI ′ �  in Eq. 12-20, and 

hence at nearly zero frequency 

 

 
0, 0

ˆ 0
em

a
T f

V
=

=
�

                  (12-22) 

 

This condition shifts the entire characteristic at no-load downwards compared to 

that at the rated torque, as shown in Fig. 12-5.  An approximate V/f characteristic 

(independent of the torque developed by the motor) is also shown in Fig. 12-5 by 

the dotted line through the origin and the rated point.  Compared to the 

approximate relationship, Fig. 12-5 shows that a “voltage boost” is required at 

higher torques, due to the voltage drop across the stator resistance.  In percentage 

terms, this voltage boost is very significant at low frequencies, which correspond 

to operating the motor at low speeds; the percentage voltage boost that is 

necessary near the rated frequency (near the rated speed) is much smaller. 
 

Figure 12-5 Relation of applied voltage and frequency to maintain rated flux density.
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0
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Figure 12-5 Relation of applied voltage and frequency to maintain rated flux density.

âV
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�  Example 12-2   In the motor drive of Example 12-1, the induction motor is 

such that while applied the rated voltages and loaded to the rated torque, it draws 

10.39 A (rms) per-phase at a power factor of 0.866 (lagging). 1.5sR = Ω .  

Calculate the voltages corresponding to the four values of the frequency f  to 

maintain ,
ˆ ˆ

ms ms ratedB B= . 

 

Solution     Neglecting the rotor leakage inductance, as shown in the phasor 

diagram of Fig. 12-6, the rated value of the rotor-branch current can be calculated 

as 

 

 ,
ˆ 10.39 2(0.866) 9.0 2ra ratedI A′ = = . 

 

Using Eq. 12-20 and the rated values, the slope of the characteristic can be 

calculated as  

 

 , ,

440 2
1.5 9.0 2ˆ ˆ

3 5.67
60

a rated s ra rated

rated

V R I V
slope

f Hz

− ×′−
= = = . 

 

In Eq. 12-20, r̂aI ′  depends on the torque that the motor is supplying.  Therefore, 

substituting for r̂aI ′  from Eq. 12-13 into Eq. 12-20, 
 

 , ,
,

,

ˆ ˆ
ˆ ˆ( ) ( )a rated s ra rated em
a s ra rated

rated em rated

V R I T
V f R I

f T

′−
′= + .             (12-23) 

 

While the drive is supplying a load whose torque depends linearly on speed (and 

demands the rated torque at the rated speed as in Example 12-1), the torque ratio 

in Eq. 12-23 is 

ma aE V�

o.aI 10 39 30 A= ∠ −

o30

maI

raI ′

Figure 12-6 Example 12-2. 
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, ,

em m

em rated m rated

T n

T n
= .   

 

Therefore, Eq. 12-23 can be written as 

 

 , ,
,

,

ˆ ˆ
ˆ ˆ( ) ( )a rated s ra rated m
a s ra rated

rated m rated

V R I n
V f R I

f n

′−
′= +              (12-24) 

 

Substituting the four values of the frequency f  and their corresponding speeds 

from Example 12-1, the voltages can be tabulated as below.  The values obtained 

by using the approximate dotted characteristic plotted in Fig. 12-5 (which 

assumes a linear V/f relationship) are nearly identical to the values in the table 

below because at low values of frequency (hence, at low speeds) the torque is also 

reduced in this example - therefore, no voltage boost is necessary. 

 

f   60 Hz 45 Hz 30 Hz 15 Hz 

âV  359.3 V 269.5 V 179.6 V 89.8 V 

          �  
 

12-4  STARTING CONSIDERATIONS IN DRIVES 

 

Starting currents are primarily limited by the leakage inductances of the stator and 

the rotor, and can be 6 to 8 times the rated current of the motor, as shown in the 

plot of Fig. 11-23b in Chapter 11.  In the motor drives of Fig. 12-1, if large 

currents are drawn even for a short time, the current rating required of the power-

processing unit will become unacceptably large. 
 

At starting, the rotor speed mω  is zero, and hence the slip speed slipω  equals the 

synchronous speed synω .  Therefore, at start-up, we must apply voltages of a low 

frequency in order to keep slipω  low, and hence avoid large starting currents.  

Figure 12-7a shows the torque-speed characteristic at a frequency 

,( )start slip ratedf f=  of the applied voltages, such that the starting torque (at 0mω = ) 
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is equal to the rated value.  The same is true of the rotor-branch current.  It is 

assumed that the applied voltage magnitudes are appropriately adjusted to 

maintain msB̂  constant at its rated value.   

 

As shown in Fig. 12-7b, as the rotor speed builds up, the frequency f of the 

applied voltages is increased continuously at a preset rate until the final desired 

speed is reached in steady state.  The rate at which the frequency is increased 

should not let the motor current exceed a specific limit (usually 150 percent of the 

rated).  The rate should be decreased for higher inertia loads to allow the rotor 

speed to catch up.  Note that the voltage amplitude is adjusted, as a function of the 

frequency f , as discussed in the previous section, to keep msB̂  constant at its 

rated value. 

 

�  Example 12-3   The motor drive in Examples 12-1 and 12-2 needs to develop 

a starting torque of 150 percent of the rated in order to overcome the starting 

friction.  Calculate startf  and ,â startV . 

 

Solution     The rated slip of this motor is 54 rpm.  To develop 150 percent of the 

rated torque, the slip speed at start-up should be ,1.5 81slip ratedn× =  rpm.  Note that 

at start-up, the synchronous speed is the same as the slip speed.  Therefore, 

, 81syn startn =  rpm.  Hence, from Eq. 12-5 for this 4-pole motor, 

 

(a) (b) 
Figure 12-7 Start-up considerations in induction-motor drives. 

steady statef

inertia

startf

f

t0

,start slip ratedf f=

, ,

ˆ '
, (%)em ra

em rated ra rated

T I

T I ′

%100%50

mω

,slip startω 



,syn startω

ˆ constant, ratedmsB =

0
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 ,

rev. per second

2.7
60 2

syn start
start

n p
f Hz

 
= = 

 �����

. 

 

At 150 percent of the rated torque, from Eq. 12-13, 

 

 , ,
ˆ ˆ1.5 1.5 9.0 2ra start ra ratedI I A′ ′= × = × . 

 

Substituting various values at start-up into Eq. 12-20,  

 

,
ˆ 43.9a startV V= .       �  

 

12-5  CAPABILITY TO OPERATE BELOW AND ABOVE THE RATED 
SPEED 

 

Due to the rugged construction of the squirrel-cage rotor, induction-motor drives 

can be operated at speeds in the range of zero to almost twice the rated speed.  

The following constraints on the drive operation should be noted: 

 

• The magnitude of applied voltages is limited to their rated value.  

Otherwise, the motor insulation may be stressed and the rating of the 

power-processing unit will have to be larger. 

 

• The motor currents are also limited to their rated values.  This is because 

the rotor-branch current '
r̂aI  is limited to its rated value in order to limit 

the loss ,r lossP  in the rotor bar resistances.  This loss, dissipated as heat, is 

difficult to remove; beyond its rated value, it will cause the motor 

temperature to exceed its design limit, thus shortening the motor life. 

 

The torque-capability regions below and above the rated speed are shown in Fig. 

12-8 and discussed in the following sections. 
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12-5-1  Rated Torque Capability Below the Rated Speed (with ,
ˆ

ms ratedB ) 

 

This region of operation has already been discussed in Section 12-3 where the 

motor is operated at the rated flux density ,
ˆ

ms ratedB .  Therefore at any speed below 

the rated speed, a motor in steady state can deliver its rated torque while '
r̂aI  stays 

equal to its rated value.  This capability region is shown in Fig. 12-8 as the rated-

torque capability region.  At low speeds, due to poor cooling, the steady state 

torque capability may have to be reduced, as shown by the dotted curve. 
 

12-5-2 Rated Power Capability Above the Rated Speed by Flux-Weakening 
 

Speeds above the rated value are obtained by increasing the frequency f of the 

applied voltages above the rated frequency, thus increasing the synchronous 

speed at which the flux-density distribution rotates in the air gap: 

 

 ,syn syn ratedω ω>                   (12-25) 

 

The amplitude of the applied voltages is limited to its rated value ,â ratedV , as 

discussed earlier.  Neglecting the voltage drop across the stator winding leakage 

inductance and resistance, in terms of the rated values, the peak flux density ˆ
msB  

declines below its rated value, such that it is inversely proportional to the 

increasing frequency f (in accordance with Eq. 11-7 of the previous chapter): 

 

Figure 12-8 Capability above and below rated speed. 
,

em

em rated

T

T
.1 0

.1 0

0

Rated power
capability

,

m

m rated

ω
ω

Rated torque
capability
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 ,
ˆ ˆ rated

ms ms rated

f
B B

f
=    ( )ratedf f>              (12-26) 

 

In the equivalent circuit of Fig. 12-4b, the rotor-branch current should not exceed 

its rated value '
,r̂a ratedI  in steady state; otherwise the power loss in the rotor will 

exceed its rated value.  Neglecting the rotor leakage inductance when estimating 

the capability limit, the maximum three-phase power crossing the air gap, in 

terms of the peak quantities (the additional factor of 1/ 2  is due to the peak 

quantities) is 

 

 max , ,

3 ˆ ˆ
2 a rated a rated ratedP V I P′= =   ( )ratedf f>              (12-27) 

 

Therefore, this region is often referred to as the rated-power capability region.  

With '
r̂aI  at its rated value, as the frequency f is increased to obtain higher speeds, 

the maximum torque that the motor can develop can be calculated by substituting 

the flux density given by Eq. 12-26 into Eq. 11-28 of the previous chapter: 

 

,

,

ˆ , , ,

,

ˆ ˆ ˆ ˆ
r rated

em rated

em t r rated ms t r rated ms ratedI
rated

T

rated
em rated

f
T k I B k I B

f

f
T

f

′
′ ′= =

=

�������

  ( )ratedf f>      (12-28) 

 

This shows that the maximum torque, plotted in Fig. 12-8, is inversely 

proportional to the frequency. 

 

12-6 REGENERATIVE BRAKING IN INDUCTION-MOTOR DRIVES 

 

Similar to dc-motor and brushless-dc motor drives, the speed of induction-motor 

drives can be reduced by regenerative braking, which makes the induction 

machine operate as a generator, as discussed in section 11-3-2-4.  To make the 

induction machine go into the generator mode, the applied voltages must be at a 

frequency at which the synchronous speed is less than the rotor speed, resulting in 

a negative slip speed: 
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 ( ) 0slip syn mω ω ω= − <   syn mω ω<               (12-29) 

 

Maintaining the flux density at ,
ˆ

ms ratedB  by controlling the voltage amplitudes, the 

torque developed, according to Eq. 12-4, is negative (in a direction opposite that 

of rotation) for negative values of slip speed.  Figure 12-9 shows the motor 

torque-speed characteristics at two frequencies, assuming a constant 

ˆ
msB = ,

ˆ
ms ratedB .  These characteristics are extended into the negative torque region 

for the rotor speeds above the corresponding synchronous speeds.  Consider that 

the induction machine is initially operating as a motor with a stator frequency fo 

and at the rotor speed of 
0mω , which is less than 

0synω .  If the stator frequency is 

decreased to 1f , the new synchronous speed is 
1synω .  This makes the slip speed 

negative, and thus emT  becomes negative, as shown in Fig. 12-9.  This negative 

emT  causes the motor speed to decrease, and some of the energy associated with 

the motor-load inertia is fed into the power-processing unit, which either 

dissipates it or supplies it back to the electric source. 

 

Figure 12-9 Braking in induction motor drives.

ˆ constantmsB =

mω

0synω

0mω

1synω
1f
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0emT
1emT 0<
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Figure 12-9 Braking in induction motor drives.
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This regenerative braking is performed in a controlled manner: the stator 

frequency is reduced slowly (keeping ˆ
msB = ,

ˆ
ms ratedB ) to avoid causing large 

currents through the power-processing unit.  This procedure, if used to bring the 

motor to a halt, can be thought of as the opposite of the starting procedure. 

 

12-7 SPEED CONTROL OF INDUCTION-MOTOR DRIVES 

 

The focus of this section is to discuss speed control of induction-motor drives in 

general-purpose applications where very precise speed control is not necessary, 

and therefore, as shown in Fig. 12-10, the speed is not measured (rather it is 

estimated).  The reference speed ,m refω �����������������	
�	��
�����
�	�����-acting 

control loop of the process where the drive is used.  Use of induction-motor 

drives in high performance servo-drive applications is discussed in the next 

chapter. 

 

In addition to the reference speed, the other two inputs to the controller are the 

measured dc-link voltage dV  and the input current di  of the inverter.  This dc-link 

current represents the instantaneous three-phase currents of the motor.  Some of 

the salient points of the control in Fig. 12-10 are described below. 

Figure 12-10 Speed control of induction motor drives. 
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−
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∑
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Limiting of Acceleration/Deceleration.  During acceleration and deceleration, it is 

necessary to keep the motor currents and the dc-link voltage dV  within their 

design limits.  Therefore, in Fig. 12-10, the maximum acceleration and 

deceleration are usually set by the user, resulting in a dynamically-modified 

reference speed signal *
mω . 

 

Current-Limiting.  In the motoring mode, if synω  increases too fast compared to 

the motor speed, then slipω  and the motor currents may exceed their limits.  To 

limit acceleration so that the motor currents stay within their limits, di  

(representing the actual motor current) is compared with the current limit, and the 

error though the controller acts on the speed control circuit by reducing 

acceleration (i.e., by reducing synω ).   

 

In the regenerative-braking mode, if synω  is reduced too fast, the negative slip will 

become too large in magnitude and will result in a large current through the motor 

and the inverter of the PPU.  To restrict this current within the limit, di  is 

compared with the current limit, and the error is fed through a controller to 

decrease deceleration (i.e., by increasing synω ). 

 

During regenerative-braking, the dc-bus capacitor voltage must be kept within a 

maximum limit.  If the rectifier of the PPU is unidirectional in power flow, a 

dissipation resistor is switched on, in parallel with the dc-link capacitor, to 

provide a dynamic braking capability.  If the energy recovered from the motor is 

still larger than that lost through various dissipation means, the capacitor voltage 

could become excessive.  Therefore, if the voltage limit is exceeded, the control 

circuit decreases deceleration (by increasing synω ). 

 

Slip Compensation.  In Fig. 12-10, to achieve a rotor speed equal to its reference 

value, the machine should be applied voltages at a frequency f, with a 

corresponding synchronous speed synω  such that it is the sum of *
mω  and the slip 

speed: 
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slip

*
syn em / km TT ω

ω

ω ω= +
�����

                 (12-30) 

 

where the required slip speed, in accordance with Eq. 12-4, depends on the torque 

to be developed.  The slip speed is calculated by the slip-compensation block of 

Fig. 12-10.  Here, emT  is estimated as follows: the dc power input to the inverter is 

measured as a product of dV  and the average of di .  From this, the estimated 

losses in the inverter of the PPU and in the stator resistance are subtracted to 

estimate the total power agP  crossing the air gap into the rotor.  We can show, by 

adding Eqs. 11-40 and 11-42 of the previous chapter that /em ag synT P ω= . 

 

Voltage Boost.  To keep the air gap flux density ˆ
msB  constant at its rated value, 

the motor voltage must be controlled in accordance with Eq. 12-18, where '
r̂aI  is 

linearly proportional to emT  estimated earlier. 

 

12-8 PULSE-WIDTH-MODULATED POWER-PROCESSING UNIT 
 

In the block diagram of Fig. 12-10, the inputs V̂  and synω  generate the three 

control voltages that are compared with a switching-frequency triangular 

waveform triv  of a constant amplitude.  The power-processing unit of Fig. 12-11a, 

as described in Chapter 4, supplies the desired voltages to the stator windings.  By 

averaging, each pole is represented by an ideal transformer in Fig. 12-11b whose 

turns-ratio is continuously controlled, proportional to the control voltage. 

 

12-8-1 Harmonics in the PPU Output Voltages 
 

The instantaneous voltage waveforms corresponding to the logic signals are 

shown in Fig. 12-12a.  These are best discussed by means of computer 

simulations.  The harmonic spectrum of the line-line output voltage waveform 

shows the presence of harmonic voltages as the sidebands of the switching 

frequency sf  and its multiples.  The PPU output voltages, for example ( )av t , can 
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be decomposed into the fundamental-frequency component (designated by the 

subscript “1”) and the ripple voltage 

 

 1 ,( ) ( ) ( )a a a ripplev t v t v t= +                 (12-31) 

 

where the ripple voltage consists of the components in the range of and higher 

than the switching frequency sf , as shown in Fig. 12-12b.  With the availability 

of higher switching-speed power devices such as modern IGBTs, the switching 

frequency in low and medium-power motor drives approach, and in some cases 

exceed, 20 kHz.  The motivation for selecting a high switching frequency sf , if 

the switching losses in the PPU can be kept manageable, is to reduce the ripple in 

the motor currents, thus reducing the electromagnetic torque ripple and the power 

losses in the motor resistances. 

 

To analyze the motor’s response to the applied voltages with ripple, we will make 

use of superposition.  The motor’s dominant response is determined by the 

fundamental-frequency voltages, which establish the synchronous speed synω  and 

the rotor speed mω .  The per-phase equivalent circuit at the fundamental 

frequency is shown in Fig. 12-13a.   

dV
+

−

a

b

c

( )aq t ( )bq t ( )cq t, ( )control av t

, ( )control bv t

, ( )control cv t

( )triv t

Figure 12-11 Power Processing Unit (PPU) (a) bi-positional switch representation;  
(b) average representation. 
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triv ,control av ,control bv ,control cv

fundamental, ab1v

ab
a b

v
v v= −

av

bv

t

(a) 

(b) 

Figure 12-12 (a) Output voltage waveforms  of the PPU; (b) harmonic spectrum  
of line-to-line voltages. 
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In the PPU output voltages, the voltage components at a harmonic frequency 

hf f>>  produce rotating flux distribution in the air gap at a synchronous speed 

,syn hω  where 

 

 , ( ) ,syn h syn syn mhω ω ω ω= × >>                 (12-32) 

 

The flux-density distribution at a harmonic frequency may be rotating in the same 

or opposite direction as the rotor.  In any case, because it is rotating at a much 

faster speed compared to the rotor speed mω , the slip speed for the harmonic 

frequencies is 

 

 , , ,slip h syn h m syn hω ω ω ω= ± ≅                 (12-33) 

 

Therefore, in the per-phase equivalent circuit at harmonic frequencies, 

 

 ,' '

,

syn h
r r

slip h

R R
ω
ω

≅                   (12-34) 

 

which is shown in Fig. 12-13b.  At high switching frequencies, the magnetizing 

reactance is very large and can be neglected in the circuit of Fig. 12-13b, and the 

harmonic frequency current is determined primarily by the leakage reactances 

(which dominate over rR′ ): 
 

Figure 12-13 Per phase equivalent circuit (a) at the fundamental frequency; 
(b) at harmonic frequencies.
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Figure 12-13 Per phase equivalent circuit (a) at the fundamental frequency; 
(b) at harmonic frequencies.
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,
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,

ˆ
ˆ

r h

ah
ah

s h

V
I

X X
≅

+
�

�

                 (12-35) 

 

The additional power loss due to the these harmonic frequency currents in the 

stator and the rotor resistances, on a three-phase basis, can be expressed as 

 

 ' 2
,

1 ˆ3 ( )
2loss R s r ah

h

P R R I∆ = +∑                 (12-36) 

 

In addition to these losses, there are additional losses in the stator and the rotor 

iron due to eddy currents and hysteresis at harmonic frequencies.  These are 

further discussed in Chapter 15 dealing with efficiencies in drives. 

 

12-8-2 Modeling the PPU-Supplied Induction Motors in Steady State 
 

In steady state, an induction motor supplied by voltages from the power-

processing unit should be modeled such that it allows the fundamental-frequency 

currents in Fig. 12-13a and the harmonic-frequency currents in Fig. 12-13b to be 

superimposed.  This can be done if the per-phase equivalent is drawn as shown in 

Fig. 12-14a, where the voltage drop across the resistance ' m
r

slip

R
ω
ω

 in Fig. 12-13a 

at the fundamental frequency is represented by a fundamental-frequency voltage 

'
,1( )m

r ra
slip

R i t
ω
ω

′ .  All three phases are shown in Fig. 12-14b. 

 

12-9 REDUCTION OF ˆ
msB  AT LIGHT LOADS 

 

In section 12-2, no attention was paid to core losses (only to the copper losses) in 

justifying that the machine should be operated at its rated flux density at any 

torque, while operating at speeds below the rated value.  As illustrated by the 

discussion in section 11-9 of Chapter 11, it is possible to improve the overall 

efficiency under lightly-loaded conditions by reducing ˆ
msB  below its rated value. 
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SUMMARY/REVIEW QUESTIONS 
 

1. What are the applications of adjustable-speed drives? 

2. Why are the thyristor-based, voltage reduction circuits for controlling 

induction-motor speed so inefficient? 

3. In operating below the rated speed (and not considering the core losses), why 

is it most efficient to keep the flux-density peak in the air gap at the rated 

value? 

4. Since an induction motor is operated at different values of frequency, hence 

different values of synchronous speed, how is the slip speed defined? 

5. Supplying a load that demands a constant torque independent of speed, what 

is the slip speed at various values of the frequency f  of the applied voltages? 

(a) 

(b) 

Figure 12-14 (a) Equivalent circuit for fundamental and harmonic frequencies in 
steady state; (b) three-phase equivalent circuit. 
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6. To keep the flux-density peak in the air gap at the rated value, why do the 

voltage magnitudes, at a given frequency of operation, depend on the torque 

being supplied by the motor? 

7. At start-up, why should small-frequency voltages be applied initially?  What 

determines the rate at which the frequency can be ramped up? 

8. At speeds below the rated value, what is the limit on the torque that can be 

delivered, and why? 

9. At speeds above the rated value, what is the limit on the power that can be 

delivered, and why?  What does it mean for the torque that can be delivered 

above the rated speed? 
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PROBLEMS 
 

12-1 Repeat Example 12-1 if the load is a centrifugal load that demands a torque, 

proportional to the speed squared, such that it equals the rated torque of the 

motor at the motor rated speed. 

12-2 Repeat Example 12-2 if the load is a centrifugal load that demands a torque, 

proportional to the speed squared, such that it equals the rated torque of the 

motor at the motor rated speed. 

12-3 Repeat Example 12-3 if the starting torque is to be equal to the rated torque. 

12-4 Consider the drive in Examples 12-1 and 12-2, operating at the rated 

frequency of 60 Hz and supplying the rated torque.  At the rated operating 

speed, calculate the voltages (in frequency and amplitude) needed to 

produce a regenerative braking torque that equals the rated torque in 

magnitude. 
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SIMULATION PROBLEM 
 

12-5 Using the average representation of the PWM inverter, simulate the drive in 

Examples 12-1 and 12-2, while operating in steady state, at a frequency of 

60 Hz.  The dc bus voltage is 800 V, and the stator and the rotor leakage 

inductances are 2.2Ω  each.  Estimate the rotor resistance rR′  from the data 

given in Examples 12-1 and 12-2. 
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CHAPTER  13 
 

VECTOR CONTROL OF 
INDUCTION-MOTOR 
DRIVES: A QUALITATIVE 
EXAMINATION 

 
 
13-1 INTRODUCTION 
 

Applications such as robotics and factory automation require accurate control of 

speed and position.  This can be accomplished by vector control of induction 

machines, which emulate the performance of dc-motor and brushless-dc motor 

servo drives.  Compared to dc and brushless-dc motors, induction motors have a 

lower cost and a more rugged construction. 

 

In any speed and position control application, torque is the fundamental variable 

which needs to be controlled.  The ability to produce a step-change in torque on 

command represents total control over the drives for high performance speed and 

position control.   

 

This chapter qualitatively shows how a step-change in torque is accomplished by 

vector control of induction-motor drives.  For this purpose, the steady state 

analysis of induction motors discussed in Chapter 11 serves very well because, 

while delivering a step-change in electromagnetic torque under vector control, an 

induction machine instantaneously transitions from one steady state to another. 

 

 

 

 



 13-2 

13-2 EMULATION OF DC- AND BRUSHLESS-DC DRIVE 
PERFORMANCE 

 

Under vector control, induction-motor drives can emulate the performance of dc-

motor and brushless-dc motor servo drives discussed in earlier chapters.  These 

are briefly reviewed as follows. 

 

In the dc-motor drive shown in Fig. 13-1a, the commutator and brushes ensure 

that the armature-current-produced mmf is at a right angle to the field flux 

produced by the stator.  Both of these fields remain stationary.  The 

electromagnetic torque emT  developed by the motor depends linearly on the 

armature current ai : 

 

em T aT k i=         (13-1) 

 

where Tk  is the dc-motor torque constant.  To change emT  as a step, the armature 

current ai  is changed (at least, attempted to be changed) as a step by the power-

processing unit, as shown in Fig. 13-1b.   

 

In the brushless-dc drive shown in Fig. 13-2a, the PPU keeps the stator current 

space vector ( )si t
��

 90 degrees ahead of the rotor field vector ( )rB t
���

 (produced by 

the permanent magnets on the rotor) in the direction of rotation.  The position 

( )m tθ  of the rotor field is measured by means of a sensor, for example, a resolver.  

(a) 
Figure 13-1 DC motor drive. 

(b) 
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The torque emT  depends on ŝI , the amplitude of the stator current space vector 

( )si t
�

: 

 

ˆ
em T sT k I=         (13-2) 

 

where Tk  is the brushless-dc motor torque constant.  To produce a step change in 

torque, the PPU changes the amplitude ŝI  in Fig. 13-2b by appropriately changing 

( )ai t , ( )bi t , and ( )ci t , keeping ( )si t
��

 always ahead of ( )rB t
���

 by 090  in the 

direction of rotation. 

 

In an induction machine, the ( )rF t
�

 and ' ( )rF t
�

 space vectors are naturally at 090  to 

the rotor flux-density space vector ( )rB t
�

, as shown in Fig. 13-3a.  In terms of the 

amplitude '
r̂I  where 

'
' ( )
( )

/ 2
r

r
s

F t
i t

N
=

�
�

, keeping ˆ
rB  constant results in the following 

torque expression: 

 
'ˆ

em T rT k I=         (13-3) 

 

where Tk  is the induction-motor torque constant.  The previous discussion shows 

that induction-motor drives can emulate the performance of dc-motor and the 

brushless-dc motor drives.  In induction machines, in this emulation (called vector 

control) the PPU in Fig. 13-3b controls the stator current space vector ( )si t
�

 as 

(a) 

Figure 13-2 Current controlled BLDC motor drive. 

(b) 
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follows: a component of ( )si t
�

 is controlled to keep ˆ
rB  constant, while the other 

orthogonal component of ( )si t
�

 is controlled to produce the desired torque. 

 

13-3 ANALOGY TO A CURRENT-EXCITED TRANSFORMER WITH 
A SHORTED SECONDARY 

 

To understand vector control in induction-motor drives, an analogy of a current-

excited transformer with a short-circuited secondary, as shown in Fig. 13-4, is 

very useful.  Initially at time 0t −= , both currents and the core flux are zero.  The 

primary winding is excited by a step-current at 0t += .  Changing this current as a 

step, in the presence of leakage fluxes, requires a voltage impulse, but as has been 

argued in Reference [1], the volt-seconds needed to bring about such a change are 

not all that large.  In any case, we will assume that it is possible to produce a step-

change in the primary-winding current.  Our focus is on the short-circuited 

secondary winding; therefore, we will neglect the leakage impedance of the 

Figure 13-4  Current excited transformer with secondary short-circuited. 
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�����
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Figure 13-3 (a) Rotor flux density and mmf space vectors; (b) vector-controlled  
induction-motor drive. 
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primary winding. 

 

In the transformer of Fig. 13-4 at t = 0− , the flux linkage 2 (0 )λ −  with the 

secondary winding is zero, as there is no flux in the core.  From the Theorem of 

Constant Flux Linkage, we know that the flux linkage of a short-circuited coil 

cannot change instantaneously.  Therefore, at t = 0+ , 

 

2 2(0 ) (0 ) 0λ λ+ −= =        (13-4) 

 

To maintain the above condition, 2i  will jump instantaneously at t = 0+ .  As 

shown in Fig. 13-4 at t = 0+ , there are three flux components linking the 

secondary winding: the magnetizing flux 
1,m iφ  produced by 1i , the magnetizing 

flux 
2,m iφ  produced by 2i , and the leakage flux 2φ

�
 produced by 2i  which links 

only winding 2 but not winding 1.  The condition that 2 (0 ) 0λ + =  requires that the 

net flux linking winding 2 be zero; hence, including the flux directions shown in 

Fig. 13-4,  

 

 
1 2, , 2(0 ) (0 ) (0 ) 0m i m iφ φ φ+ + +− − =

�
 

or 

 
1 2, , 2(0 ) (0 ) (0 )m i m iφ φ φ+ + += +

�
      (13-5a) 

 

Although we will not derive it, in response to a step-change in the primary-

winding current, the secondary-winding current will jump as a step to the 

following value: 

 

2 1
2

(0 ) (0 )mL
i i

L
+ +=        (13-5b) 

 

where mL  is the magnetizing inductance, as defined in the transformer equivalent 

circuit of Fig. 5-16, and 2 2mL L L= +
�

 (assuming equal number of turns in the 

primary and the secondary windings).  We will see later that a similar step-change 

in the rotor current occurs in a vector-controlled induction motor. 
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13-4  D- AND Q-AXIS WINDING REPRESENTATION 
 

Before we apply the transformer analogy to induction machines, we will 

qualitatively look at an orthogonal set of d- and q-axis windings producing the 

same mmf as three stator windings (each with sN  turns, sinusoidally-distributed) 

with ai , bi , and ci  flowing through them.  In Fig. 13-5a at a time t , ( )si t
�

 and 

( )sF t
�

 are produced by ( )ai t , ( )bi t , and ( )ci t .  The resulting mmf 

( ) ( / 2) ( )s s sF t N i t=
� �

 can be produced by the set of orthogonal windings shown in 

Fig. 13-5b, each sinusoidally-distributed with 3 / 2 sN  turns: one winding along 

the d-axis, and the other along the q-axis.  The reason for using this cumbersome 

factor 3 / 2  is to yield appropriate winding inductances.  Note that this d-q axis 

set may be at any arbitrary angle with respect to the phase-a axis.  In order to keep 

the mmf and the flux-density distributions the same as in the actual machine with 

three-phase windings, the currents in these two windings would have to be sdi  and 

sqi  where, as shown in Fig. 13-5c, these two current components are 2 / 3  times 

the projections of the ( )si t
�

 vector along the d-axis and q-axis: 
 

sdi  = 
2

3
 x the projection of ( )si t

�
 vector along the d-axis  (13-6) 

sqi  = 
2

3
 x the projection of ( )si t

�
 vector along the q-axis  (13-7) 

Figure 13-5 Representation by d and q-axis winding set at an arbitrary angle. 
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where, the reason for the factor 2 / 3  has to do with the choice of 3 / 2 sN  turns 

for the d- and the q- axis windings. 

 

13-5 INITIAL FLUX BUILDUP PRIOR TO 0t −=  

 

Next, we will apply the information of the last section to vector control of 

induction machines.  As shown in Fig. 13-6, prior to 0t −= , the magnetizing 

currents are built up in three phases such that 
 

,
ˆ(0 )a m ratedi I− =    and  ,

1 ˆ(0 ) (0 )
2b c m ratedi i I− −= = −   (13-8) 

 

The current buildup prior to 0t −=  may occur slowly over a long period of time 

and represents the buildup of the flux in the induction machine up to its rated 

value.  Therefore, these currents represent the rated magnetizing currents to bring 

the air gap flux density to its rated value.  Note that there will be no rotor currents 

at 0t −=  (they decay out prior to 0t −= ).  Also, at 0t −= , the stator mmf can be 

represented by that produced by the d-axis winding (chosen to be along the a-

axis) with a current sdi , where 

 

, , ,

2 2 3 3ˆ ˆ ˆ(0 ) ( )
3 3 2 2sd ms rated m rated m ratedi I I I− = = =    (13-9a) 

Figure 13-6 Currents and flux at           .  t 0−=
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and 

0sqi =          (13-9b) 

 

Note that the sdi -produced stator leakage flux does not link the rotor, and hence it 

is of no concern in this discussion. 

 

At 0t −= , the peak of the flux lines , sdm iφ  linking the rotor is horizontally 

oriented.  There is no rotor leakage flux because there are no currents flowing 

through the rotor bars, and hence all of the flux , sdm iφ  produced by the stator links 

the rotor.  Therefore, (0 )rB −
�

, equal to (0 )msB −
�

, is horizontally oriented along the 

d-axis (same as the a-axis at 0t −= ). 

 

13-6 STEP-CHANGE IN TORQUE AT 0t +=  

 

Next, we will see how this induction machine can produce a step-change in 

torque.  Initially, we will assume that the rotor is blocked from turning ( 0)mω = , 

a restriction that will soon be removed.  Now at 0t += , the three stator currents 

are changed as a step in order to produce a step-change in the q-axis current sqi , 

without changing sdi , as shown in Fig. 13-7a.  The current sqi  in the stator q-

winding produces the flux lines , sqm iφ  that cross the air gap and link the rotor.  The 

leakage flux produced by sqi  can be safely neglected from the discussion here 

(because it doesn’t link the shorted rotor cage), similar to neglecting the leakage 

flux produced by the primary winding of the transformer in the previous analogy. 

 

Turning our attention to the rotor at 0t += , we note that the rotor is a short-

circuited cage, so its flux linkage cannot change instantaneously.  To oppose the 

flux lines produced by sqi , currents are instantaneously induced in the rotor bars 

by the transformer action, as shown in Fig. 13-7a.   
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This current distribution in the rotor bars is sinusoidal, as justified below using 

Fig. 13-7b: 

 

To justify the sinusoidal distribution of current in the rotor bars, 

assume that the bars x x′−  constitute one short-circuited coil, and 

the bars y y′−  the other coil.  The density of flux lines produced 

by sqi  is sinusoidally distributed in the air gap.  The coil x x′−  

links most of the flux lines produced by sqi .  But the coil y y′−  

links far fewer flux lines.  Therefore, the current in this coil will be 

relatively smaller than the current in x x′− . 

 

These rotor currents in Fig. 13-7a produce two flux components with peak 

densities along the q-axis and of the direction shown: 

 

1. The magnetizing flux , rm iφ  that crosses the air gap and links the stator. 

2. The leakage flux rφ
�

 that does not cross the air gap and links only the 

rotor.   

 

'y y

'xx

(a) (b) 
Figure 13-7 Currents at           .  t 0+=
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By the Theorem of Constant Flux Linkage, at 0t += , the net flux linking the 

short-circuited rotor in the q-axis must remain zero.  Therefore at 0t += , for the 

condition that , 0q netφ =  (taking flux directions into account): 

 

 , ,( ) ( ) ( )
sq rm i m i ro o oφ φ φ+ + += +

�
      (13-10) 

 

Since sdi  and the d-axis rotor flux linkage have not changed, the net flux, rB
���

, 

linking the rotor remains the same at 0t +=  as it was at 0t −= . 

 

The space vectors at 0t +=  are shown in Fig. 13-8.  No change in the net flux 

linking the rotor implies that rB
���

 has not changed; its peak is still horizontal along 

the a-axis and of the same magnitude as before.  The rotor currents produced 

instantaneously by the transformer action at 0t +=  result in a torque (0 )emT + .  

This torque will be proportional to ˆ
rB  and sqi  (due to the rotor leakage flux, 

slightly less than sqi  by a factor of /m rL L  where r m rL L L′= +
�

 in the equivalent 

circuit of Fig. 11-21): 

 

 ˆ , m
em r sq

r

L
T B i

L
α        (13-11) 

 

If no action is taken beyond 0t += , the rotor currents will decay and so will the 

force on the rotor bars.  This current decay would be like in a transformer with a 

short-circuited secondary and with the primary excited with a step of current 

source.  In the case of the transformer, decay of 2i  could be prevented by injecting 

a voltage equal to 2 2 (0 )R i +  beyond 0t += , as shown in Fig. 13-9 as a step 

voltage, to overcome the voltage drop across 2R . 

Figure 13-8 Flux densities at t = 0+. 
rB

���

t 0+=

rθ

lrB
����

msB
�����

axisa −
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In the case of an induction machine, beyond 0t += , as shown in Fig. 13-10, we 

will equivalently rotate both the d-axis and the q-axis stator windings at an 

appropriate slip speed slipω  in order to maintain ( )rB t
�

 completely along the d-axis 

with a constant amplitude of ˆ
rB , and to maintain the same rotor-bar current 

distribution along the q-axis.  This corresponds to the beginning of a new steady 

state.  Therefore, the steady state analysis of Chapter 11 applies.   

 

As the d-axis and the q-axis windings rotate at the appropriate value of slipω  

(notice that the rotor is still blocked from turning in Fig. 13-10), there is no net 

rotor flux linkage along the q-axis.  The flux linkage along the d-axis remains 

constant with a flux density ˆ
rB  “cutting” the rotor bars and inducing the bar 

Figure 13-9 Voltage needed to prevent the decay of secondary current. 
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Figure 13-10 Current and fluxes at some time t > 0, with the rotor blocked. 
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voltages to cancel the bariR  voltage drops.  Therefore, the entire distribution 

rotates with time, as shown in Fig. 13-10 at any arbitrary time 0t > .  For the 

relative distribution and hence the torque produced to remain the same as at 

0t += , the two windings must rotate at the exact slipω , which depends linearly on 

both the rotor resistance '
rR  and sqi  (slightly less by the factor /m rL L  due to the 

rotor leakage flux), and inversely on ˆ
rB  

 

 
' , ( / )

ˆ
r m r sq

slip

r

R L L i

B
ω α       (13-12) 

 

Now we can remove the restriction of 0mω = .  If we need to produce a step 

change in torque while the rotor is turning at some speed mω , then the d-axis and 

the q-axis windings should be equivalently rotated at the appropriate slip speed 

slipω  relative to the rotor speed mω , that is, at the synchronous speed 

syn m slipω ω ω= +  as shown in Fig. 13-11. 

 

13-6-1 Similarity Between Voltage-Fed and Vector-Controlled Induction 
Machines in Steady State 

 

In steady state, the voltages, the currents, and the fluxes associated with the 

induction machine are the same, regardless of if the machine is supplied by a 

three-phase voltage source, as discussed in Chapters 11, or supplied with 

controlled currents, as discussed in this chapter.  This can be observed by drawing 

the relevant space vectors in Fig. 13-12, neglecting the stator leakage impedance.  

The applied voltage space vector sv
�

 in the voltage-fed machine results in msi
�

 to 

establish msB
�

.  In contrast, in the vector-controlled machine, sdi  is kept constant 

(below the rated speed) to maintain ˆ
rB  at its rated value, which, including the 

effect of the rotor-leakage flux, establishes msB
�

 and hence sv
�

. 
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13-7 TORQUE, SPEED, AND POSITION CONTROL 
 

In vector control of induction-motor drives, the stator phase currents ( )ai t , ( )bi t , 

and ( )ci t  are controlled in such a manner that ( )sqi t  delivers the desired 

electromagnetic torque while ( )sdi t  maintains the peak rotor-flux density at its 

rated value.  The reference values * ( )sqi t  and * ( )sdi t  are generated by the torque, 

speed, and position control loops, as discussed below. 
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Figure 13-11 Vector controlled conditioned with rotor speed       . mω

Figure 13-12 Space vectors at any time in steady state. 
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13-7-1 The Reference Current * ( )sqi t  

 

The reference value * ( )sqi t  depends on the desired torque which can be calculated 

by cascade control discussed in Chapter 8.  In the cascade control illustrated in 

Fig. 13-13, the position loop is the outermost loop and the torque loop is the 

innermost loop.  The loop bandwidths increase from the outermost to the 

innermost loop.  The error between the reference (desired) position, * ( )m tθ , and 

the measured position ( )m tθ  is amplified by a proportional (P) amplifier to 

generate the speed reference signal * ( )m tω .  The error between the reference speed 

* ( )m tω  and the measured speed ( )m tω  is amplified by a proportional-integral (PI) 

amplifier to generate the torque reference * ( )emT t .  Finally, the error between 

* ( )emT t  and the calculated torque ( )emT t  is amplified by another PI amplifier to 

generate the reference value * ( )sqi t . 

 

13-7-2 The Reference Current * ( )sdi t  

 
For measured speed values below the rated speed of the motor, the rotor flux-

density peak ˆ
rB  is maintained at its rated value as shown by the speed versus 

flux-density block in Fig. 13-13.  Above the rated speed, the flux density is 

reduced in the flux-weakening mode, as discussed in Chapter 12.  The error 

Figure 13-13 Vector controlled induction motor drive with a current-regulated PPU. 
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between *ˆ
rB  and the calculated flux-density peak ˆ

rB  is amplified by a PI amplifier 

to generate the reference value * ( )sdi t . 

 

13-7-3 The Transformation and Inverse-Transformation of Stator Currents 
 

Fig. 13-13 shows the angle ( )
rB tθ  of the d-axis, with respect to the stationary a-

axis, to which the rotor flux-density space vector ( )rB t
�

 is aligned at 0t −= .  This 

angle is computed by the vector-controlled motor model, which is described in the 

next section.  Using the d-axis angle ( )
rB tθ , the reference current signals * ( )sdi t  

and * ( )sqi t  are transformed into the stator current reference signals *( )ai t , *( )bi t , and 

*( )ci t , as shown by the transform block ( dq to abc− − ) in Fig. 13-13.  The current-

regulated power-processing unit uses these reference signals to supply the desired 

currents to the motor (details of how it can be accomplished are left out [2]).  The 

stator currents are measured and the d-axis angle ( )
rB tθ  is used to inverse-

transform them into the signals ( )sdi t  and ( )sqi t , as shown by the inverse-

transform block in Fig. 13-13. 

 

13-7-4 The Motor Model for Vector Control 
 

The motor model in Fig. 13-13 has the following measured inputs: the three stator 

phase currents ( )ai t , ( )bi t , and ( )ci t , and the measured rotor speed ( )m tω .  The 

motor model also needs accurate estimation of the rotor parameters mL , '
rL
�

, and 

'
rR .  The following parameters are calculated in the motor model for internal use 

and also as outputs: the angle ( )
rB tθ , with respect to the stationary phase-a axis, 

to which the d-axis is aligned, the peak of the rotor flux density ˆ ( )rB t , and the 

electromagnetic torque ( )emT t .  In the motor model, ˆ ( )rB t  is computed by 

considering the dynamics along the d-axis, which is valid in the flux-weakening 

mode as well, where ˆ ( )rB t  is decreased to allow operation at higher than rated 

speed.  The electromagnetic torque ( )emT t  is computed based on the mathematical 

expression derived based on Eq. 13-11.  The angle ( )
rB tθ  is computed by first 
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calculating the slip speed ( )slip tω  based on Eq. 13-12.  This slip speed is added to 

the measured rotor speed to yield the instantaneous synchronous speed of the d- 

and the q-axes: 

 

 ( ) ( ) ( )syn m slipt t tω ω ω= +       (13-13) 

 

With 0
rBθ =  at starting, by initially aligning the rotor flux-density space vector 

along the a-axis, integrating the instantaneous synchronous speed results in the d-

axis angle as follows: 

 

 
0

( ) 0 ( )
r

t

B synt dθ ω τ τ= + ⋅∫       (13-14) 

 

where τ  is a variable of integration.  Based on physical principles, the 

mathematical expressions are clearly and concisely developed in References [2] 

and [3] but are considered beyond the scope of this introductory textbook. 

 

13-8 SENSOR-LESS DRIVES 
 

In the vector-control principle described in this chapter, it is essential that currents 

supplied to the motor be measured and compared with their reference values.  

Measurement of these currents does not pose a problem because they are supplied 

by the power-processing unit, and thus can be measured where the PPU is located, 

even if the motor is far away, supplied by long cables.  However, the necessity of 

the above vector-control procedure, that the motor speed mω  be measured, can 

sometimes be objectionable. 

 

In vector control of induction machines, it is adequate to use incremental speed 

sensors, such as optical encoders.  Speed sensors are mechanical devices, which 

present additional cost, need space, can cause mechanical resonances, and 

decrease the system reliability due to their own delicate nature and the extra wires 

associated with the sensor to the controller for the power-processing unit.  In 

many position control applications, it is necessary to measure position; hence the 

speed information can be derived from the position sensors at no cost.  However, 
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in other applications it will be highly desirable to do without speed sensors.  This 

has been a topic of intense research of late. 

 

Many techniques for estimating the rotor speed in vector control are discussed in 

the literature.  Other techniques, without using the vector-control principle 

described earlier, deliver the ability to change the electromagnetic torque 

developed by the induction motor as a step.  One such technique used in some 

commercially available drives is called direct-torque control (DTC), which is 

described in References [4] and [5].  In drives without speed sensors, it becomes 

challenging to control torque accurately at low speeds.  There is no doubt that 

research will continue to improve the performance of sensor-less drives at low 

speeds. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. How is torque controlled in brush-type dc drives and brushless-dc drives? 

2. In a sentence, describe the vector-control of induction-motor drives that 

emulates the performance of dc drives.  Why is it more challenging? 

3. What does the Theorem of Constant Flux Linkage state? 

4. In words, what does the analogy of a transformer with the short-circuited 

secondary, and excited by a step-current conclude? 

5. What is the reason for introducing the d-axis and the q-axis windings? 

6. Without the details, state the reason for choosing 3 / 2 sN  as the number for 

turns in the d-axis and the q-axis windings. 

7. How are sdi  and sqi  obtained from the si
��

 space vector? 

8. At the end of the initial flux build-up process at 0t −= , are there any currents 

in the rotor bar? 

9. How are the currents induced in the rotor bars at 0t += ? 

10. What needs to be done to maintain the torque produced at 0t += ? 

11. Why does the slip speed at which the d-axis and the q-axis windings need to 

be rotated, to maintain the torque produced beyond 0t += , depend on various 

quantities as given in Eq. 13-12? 

12. Describe the similarity between voltage-fed induction machines and vector-

controlled induction machines. 
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13. Describe the control block diagram of vector control. 

14. Describe DTC and its objectives. 
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PROBLEMS 
 

13-1 In a 2-pole induction machine, establishing the rated air gap flux density 

requires that ˆ 4mI A= .  To build up to this rated flux, calculate the three-

phase currents at 0t −= . 

13-2 In the machine of Problem 13-1, the desired step-torque at 0t +=  requires a 

step change in 10sqi A= .  Calculate the phase currents at 0t +=  which 

result in the desired step change in q-axis current while maintaining the 

rated flux density in the air gap. 

13-3 In the machine of Problems 13-1 and 13-2, the slip speed at which the 

equivalent d-axis and the q-axis windings need to be rotated is 



 13-19 

11.31 /slip rad sω = .  Assuming that the rotor is blocked from turning, 

calculate the phase currents at 8t ms= . 

13-4 Repeat Problem 13-3, if the rotor is turning and the speed essentially can be 

assumed constant at 1100 rpm. 
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CHAPTER  14 

 

RELUCTANCE DRIVES: 
STEPPER-MOTOR AND 
SWITCHED-RELUCTANCE 
DRIVES 

 

 
14-1 INTRODUCTION 

 

Reluctance machines operate on principles that are different than those associated 

with all of the machines discussed so far.  Reluctance drives can be broadly 

classified into three categories: stepper-motor drives, switched-reluctance drives, 

and synchronous-reluctance-motor drives.  Only the stepper-motor and the 

switched-reluctance-motor drives are discussed in this chapter. 

 

Stepper-motor drives are widely used for position control in many applications, 

for example computer peripherals, textile mills, integrated-circuit fabrication 

processes, and robotics.  A stepper-motor drive can be considered as a digital 

electromechanical device, where each electrical pulse input results in a movement 

of the rotor by a discrete angle called the step-angle of the motor, as shown in Fig. 

14-1.  Therefore, for the desired change in position, the corresponding number of 

electrical pulses is applied to the motor, without the need for any position 

feedback. 

 

Switched-reluctance-motor drives are operated with controlled currents, using 

feedback.  They are being considered for a large number of applications discussed 

later in this chapter. 
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14-2 THE OPERATING PRINCIPLE OF RELUCTANCE MOTORS 
 

Reluctance motors operate by generating reluctance torque.  This requires that the 

reluctance in the magnetic-flux path be different along the various axes.  Consider 

the cross-section of a primitive machine shown in Fig. 14-2a in which the rotor 

has no electrical excitation and the stator has a coil excited by a current ( )i t .  In 

the following analysis, we will neglect the losses in the electrical and the 

mechanical systems, but these losses can also be accounted for.  In the machine of 

Fig. 14-2a, the stator current would produce a torque on the rotor in the counter-

clockwise direction, due to fringing fluxes, in order to align the rotor with the 

stator pole.  This torque can be estimated by the principle of energy conservation; 

this principle states that  

 

Electrical Energy Input = Increase in Stored Energy + Mechanical Output (14-1) 

 

Assuming that magnetic saturation is avoided, the stator coil has an inductance 

( )L θ  which depends on the rotor position θ .  Thus, the flux-linkage λ  of the coil 

can be expressed as 

 

 ( )L iλ θ=         (14-2) 

 

The flux-linkage λ depends on the coil inductance as well as the coil current.  At 

any time, the voltage e across the stator coil, from Faraday’s Law, is 

 

t0

input

Electrical 
pulse

t0

step angle

θ m

Fig 14-1 Position change in stepper motor 

(a) (b) 

{
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d

e
dt

λ=         (14-3) 

 

The polarity of the induced voltage is indicated in Fig. 14-2a.  Based on Eqs. 14-2 

and 14-3, the voltage in the coil may be induced due to the time-rate of change of 

the current and/or the coil inductance.  Using Eq. 14-3, the energy supplied by the 

electrical source from a time 1t  (with a flux linkage of 1λ ) to time 2t  (with a flux 

linkage of 2λ ) is 

 

 
2 2 2

1 1 1

t t

el

t t

d
W e i dt i dt i d

dt

λ

λ

λ λ= ⋅ ⋅ = ⋅ ⋅ = ⋅∫ ∫ ∫      (14-4) 

 

In order to calculate the torque developed by this motor, we will consider the 

counter-clockwise movement of the rotor in Fig. 14-2a by a differential angle dθ  

in the following steps shown in Fig. 14-2b: 

 

• Keeping θ  constant, the current is increased from zero to a value 1i .  The 

current follows the trajectory from 0 to 1 in the iλ −  plane in Fig. 14-2b.  

Using Eq. 14-4, we find that the energy supplied by the electrical source is 

obtained by integrating with respect to λ  in Fig. 14-2b; thus the energy 

supplied equals 1(0 1 )Area λ− −  

λ

2

1

i1 i

λ∆
�
�
�

λ2

λ1

atθ

atθ θ+ ∆

0

(a) (b) 

Figure 14-2 (a) Cross-section of a primitive machine; (b)           trajectory during motion. λ − i

θ
fixed

( )e t

( )i t

−

+
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1 1 1

1
(0 1) (0 1 )

2elW Area iλ λ→ = − − =      (14-5) 

 

This is energy that gets stored in the magnetic field of the coil, since there is 

no mechanical output. 

 

• Keeping the current constant at 1i , the rotor angle is allowed to be increased 

by a differential angle, from θ  to ( )θ θ+ ∆  in the counter-clockwise 

direction.  This follows the trajectory from 1 to 2 in the iλ −  plane of Fig. 14-

2b.  The change in flux linkage of the coil is due to the increased inductance.  

From Eq. 14-2, 

 

1i Lλ∆ = ∆         (14-6) 

 

Using Eq. 14-4 and integrating with respect to λ , we find that the energy 

supplied by the electrical source during this transition in Fig. 14-2b is 

 

1 2 1 2 1(1 2) ( 1 2 ) ( )elW Area iλ λ λ λ→ = − − − = −    (14-7) 

 

• Keeping the rotor angle constant at ( )θ θ+ ∆ , the current is decreased from 1i  

to zero.  This follows the trajectory from 2 to 0 in the iλ −  plane in Fig. 14-

2b.  Using Eq. 14-4, we see that the energy is now supplied to the electrical 

source.  Therefore, in Fig. 14-2b, 

 

2 2 1

1
(2 0) (2 0 )

2elW Area iλ λ→ = − − − = −     (14-8) 

 

During these three transitions, the coil current started with a zero value and ended 

at zero.  Therefore, the increase in the energy storage term in Eq. 14-1 is zero.  

The net energy supplied by the electric source is 

 

, 1 1 2 2(0 1 ) ( 1 2 ) (2 0 )

(0 1 2)

el netW Area Area Area

Area

λ λ λ λ= − − + − − − − − −

= − −
  (14-9) 
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(0 1 2)Area − −  is shown hatched in Fig. 14-2b.  This triangle has a base of λ∆  

and a height of 1i .  Thus we can find its area: 

 

, 1

1
(0 1 2) ( )

2el netW Area i λ= − − = ∆                (14-10) 

 

Using Eq. 14-6 and Eq. 14-10, 

 

2
, 1 1 1 1

1 1 1
( ) ( )

2 2 2el netW i i i L i Lλ= ∆ = ⋅∆ = ∆               (14-11) 

 

Since there is no change in the energy stored, the electrical energy has been 

converted into mechanical work by the rotor, which is rotated by a differential 

angle θ∆  due to the developed torque emT .  Therefore, 

 

 2
1

1

2emT i Lθ∆ = ∆  or 2
1

1

2em

L
T i

θ
∆=
∆

              (14-12) 

 

Assuming a differential angle, 

 

 2
1

1

2em

dL
T i

dθ
=                   (14-13) 

 

This shows that the electromagnetic torque in such a reluctance motor depends on 

the current squared.  Therefore, the counter-clockwise torque in the structure of 

Fig. 14-2a is independent of the direction of the current.  This torque, called the 

reluctance torque, forms the basis of operation for stepper motors and switched-

reluctance motors. 

 
14-3 STEPPER-MOTOR DRIVES 
 

Stepper motors come in a large variety of constructions, with three basic 

categories: variable-reluctance motors, permanent-magnet motors, and hybrid 

motors.  Each of these is briefly discussed. 
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14-3-1 Variable-Reluctance Stepper Motors 

 

Variable-reluctance stepper motors have double saliency; that is, both the stator 

and the rotor have different magnetic reluctances along various radial axes.  The 

stator and the rotor also have a different number of poles.  An example is shown 

in Fig. 14-3, in which the stator has six poles and the rotor has four poles.  Each 

phase winding in this three-phase machine is placed on the two diametrically 

opposite poles.   

 

Exciting phase-a with a current ai  results in a torque that acts in a direction to 

minimize the magnetic reluctance to the flux produced by ai .  With no load 

connected to the rotor, this torque will cause the rotor to align at 00θ = , as shown 

in Fig. 14-3a.  This is the no-load equilibrium position.  If the mechanical load 

causes a small deviation in θ , the motor will develop an opposing torque in 

accordance with Eq. 14-13. 

 

To turn the rotor in a clockwise direction, ai  is reduced to zero and phase-b is 

excited by ib , resulting in the no-load equilibrium position shown in Fig. 14-3b.  

The point z on the rotor moves by the step-angle of the motor.  The next two 

transitions with ci  and back to ai  are shown in Figs. 14-3c and 14-3d.  Following 

the movement of point z, we see that the rotor has moved by one rotor-pole-pitch 

for three changes in excitation ( , , and )a b b c c ai i i i i i→ → → .  The rotor-pole-

pitch equals 0(360 / )rN , where rN  equals the number of rotor poles.  Therefore, 

in a q-phase motor, the step-angle of rotation for each change in excitation will be 

 

 
0360

step-angle
rq N

=                  (14-14) 

In the motor of Fig. 14-3 with 4rN =  and 3q = , the step-angle equals 030 .  The 

direction of rotation can be made counter-clockwise by excitation in the sequence 

a-c-b-a. 
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14-3-2 Permanent-Magnet Stepper-Motors 
 

In permanent-magnet stepper-motors, permanent magnets are placed on the rotor, 

as in the example shown in Fig. 14-4.  The stator has two phase windings.  Each 

winding is placed on four poles, the same as the number of poles on the rotor.  

Each phase winding produces the same number of poles as the rotor.  The phase 

currents are controlled to be positive or negative.  With a positive current ai
+ , the 

resulting stator poles and the no-load equilibrium position of the rotor are as  

z

θ = 0
ia

ia

tooth pitch

θ =1 rotor

z

θ = 1

3
rotor

tooth pitch

ib
z

(a) (b) 

(c) (d) 

Figure 14-3 Variable reluctance motor; excitation sequence a-b-c-a (a) phase-a excited;  
(b) phase-b excited; (c) phase-c excited; (d) phase a excited. 

tooth pitch

ic

θ = 2

3
rotor

z



 14-8 

 

shown in Fig. 14-4a.  Reducing the current in phase-a to zero, a positive current 

bi
+  in phase-b results in a clockwise rotation (following the point z on the rotor) 

z
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N
N
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S

S

B B

B

B

θ =135o

z

S
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N
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z

S

S
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N
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N
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B
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z
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S

S
N

N
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A

A

θ = 0o

(a) (b) 

(c) (d) 

Figure 14-4 Two-phase permanent-magnet step motor; excitation sequence ia+, ib+, ia-, ib-,ia+ 
              (a) ia+  ; (b) ib+ ;  (c) ia-; (d) ib-; (e) ia+. 
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shown in Fig. 14-4b.  To rotate further, the current in phase-b is reduced to zero 

and a negative current ai
−  causes the rotor to be in the position shown in Fig. 14-

4c.  Figure 14-4 illustrates that an excitation sequence 

( , , , )a b b a a b b ai i i i i i i i+ + + − − − − +→ → → →  produces a clockwise rotation.  Each 

change in excitation causes rotation by one-half of the rotor-pole-pitch, which 

yields a step-angle of 045  in this example. 

 

14-3-3 Hybrid Stepper-Motors 

 

Hybrid stepper-motors utilize the principles of both the variable-reluctance and 

the permanent-magnet stepper-motors.  An axial cross-section is shown in Fig. 

14-5.  The rotor consists of permanent magnets with a north and a south pole at 

the two opposite ends.  In addition, each side of the rotor is fitted with an end cap 

with rN  teeth; rN  is equal to 10 in this figure.  The flux produced by the 

permanent magnets is shown in Fig. 14-5.  All of the end-cap teeth on the left act 

like south poles, while all of the end-cap teeth on the right act like north poles.   

 

The left and the right cross-sections, perpendicular to the shaft, along 'L L−  and 
'R R− , are shown in Fig. 14-6.  The two rotor end caps are intentionally 

displaced with respect to each other by one-half of the rotor-tooth-pitch.  The 

windings

end cap

air gap

outer casing

shaft

stator

stator

end cap
N

NS

S

R'

R

L'

L

Figure 14-5 Axial view of a hybrid stepper motor. 
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stator in this figure consists of 8 poles in which the slots run parallel to the shaft 

axis.   

 

The stator consists of two phases; each phase winding is placed on 4 alternate 

poles, as shown in Fig. 14-6. 
 

Excitation of phase-a by a positive current ai
+  results in north and south poles, as 

shown in both cross-sections in Fig. 14-6a.  In the no-load equilibrium position 

shown in Fig. 14-6a, on both sides, the opposite stator and rotor poles align while 

the similar poles are as far apart as possible.  For a clockwise rotation, the current 

in phase-a is brought to zero and phase-b is excited by a positive current bi
+ , as 

shown in Fig. 14-6b.  Again, on both sides, the opposite stator and rotor poles 

Figure14-6 Hybrid step-motor excitation (a) phase-a is excited with ia+; (b) phase-b 
is excited with ib+ . 
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align while the similar poles are as far apart as possible.  This change of 

excitation ( )a bi i+ +→  results in clockwise rotation by one-fourth of the rotor-tooth-

pitch.  Therefore, in a two-phase motor, 
 

 
0360 /

step-angle
4

rN=                 (14-15) 

 

which, in this example with 10rN = , equals 09 . 

 

14-3-4 Equivalent-Circuit Representation of a Stepper-Motor 

 

Similar to other machines discussed previously, stepper-motors can be 

represented by an equivalent circuit on a per-phase basis.  Such an equivalent 

circuit for phase-a is shown in Fig. 14-7 and consists of a back-emf, a winding 

resistance sR , and a winding inductance sL .  The magnitude of the induced emf 

depends on the speed of rotation, and the polarity of the induced emf is such that 

it absorbs power in the motoring mode.   

 
14-3-5 Half-Stepping and Micro-Stepping 
 

It is possible to get smaller angular movement for each transition in the stator 

currents.  For example, consider the variable-reluctance motor for which the no-

load equilibrium positions with ai  and bi  were shown in Figs. 14-3a and 14-3b, 

− −

+

+

iph

vph

eph

Lph

Rph

Figure 14-7 Per-phase equivalent circuit of a step-motor. 
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respectively.  Exciting phases a and b simultaneously causes the rotor to be in the 

position shown in Fig. 14-8, which is one-half of a step-angle away from the 

position in Fig. 14-3a with ai .  Therefore, if “half-stepping” in the clockwise 

direction is required in the motor of Fig. 14-3, the excitation sequence will be as 

follows: 

 

 , , ,( ) ( ) ( )a a b b b c c c a ai i i i i i i i i i→ → → → → →               (14-16) 

 
By precisely controlling the phase currents, it is possible to achieve micro-step 

angles.  For example, there are hybrid-stepper motors in which a step-angle can 

be divided into 125 micro-steps.  This results in 25,000 micro-steps/revolution in 

a two-phase hybrid motor with a step-angle of 1.8°. 

 

14-3-6 Power-Processing Units for Stepper-Motors 

 

In variable-reluctance drives, the phase currents need not reverse direction.  A 

unidirectional-current converter for such motors is shown in Fig. 14-9a.  Turning 

both switches on simultaneously causes the phase current to build up quickly, as 

shown in Fig. 14-9b.  Once the current builds up to the desired level, it is 

maintained at that level by pulse-width-modulating one of the switches (for 

example 1T ) while keeping the other switch on.  By turning both switches off, the 

current is forced to flow into the dc-side source through the two diodes, thus 

decaying quickly. 

Figure 14-8 Half-stepping by exciting two phases. 

ib

ia
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Bi-directional currents are needed in permanent-magnet and hybrid stepper-

motors.  Supplying these currents requires a converter such as that shown in Fig. 

14-10.  This converter is very similar to those used in dc-motor drives and was 

discussed in Chapter 7. 

 
14-4 SWITCHED-RELUCTANCE MOTOR DRIVES 

 

Switched-reluctance motors are essentially variable-reluctance stepper-motors 

that are operated in a closed-loop manner with controlled currents.  In these 

T1T1 on
off

T2 on

T1 on
T T1 2, off

Iref

iph

t

iph

vph+

+ −

−

Lph

Rsense

T2

D1T1

+

−

Vd

eph

D2

Phase winding

(a)  

(b) 

Figure 14-9 Unipolar voltage drive for variable-reluctance motor (a) circuit; (b) 
current waveform. 



 14-14 

Phase winding
T1

T2

T3

T4

vph
+ −

D3D1

D2D4

Vd

+

−

Figure 14-10 Bipolar voltage drive. 

drives, the appropriate phases are energized or de-energized based on the rotor 

position.  These drives can potentially compete with other servo and adjustable-

speed drives in a variety of applications. 

 

Consider the cross-section shown in Fig. 14-11.  This motor is similar to the 

variable-reluctance stepper motor of Fig. 14-3.  At 0t = , the rotor is at an angle 

of / 6θ π= −  and the inductance of the phase-a winding is small due to a large air 

gap in the path of the flux lines.  In order to move the rotor in Fig. 14-11a 

counter-clockwise, the current ai  is built up quickly while the inductance is still 

small.  As the rotor moves counter-clockwise, the phase-a inductance increases 

due to the stator and the rotor poles moving towards alignment, as shown in Fig. 

14-11b at 0θ = .  This increases the flux-linkage, causing the magnetic structure 

to go into a significant degree of saturation.  Once at 0θ = , phase-a is de-

energized.  The iλ −  trajectories for / 6θ π= −  and 0θ =  are shown in Fig. 14-

11c.  There are, of course, trajectories at the intermediate values of θ .  The 

shaded area between the two trajectories in Fig. 14-11c represents the energy that 

is converted into mechanical work.  A sequence of excitations similar to that in 

the variable-reluctance drive of Fig. 14-3 follows. 

 

In order for switched-reluctance motors to be able to compete with other drives, 

they must be designed to go into magnetic saturation.  A unidirectional-current 

converter such as that in Fig. 14-9a can be used to power these motors. 
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There are many applications in which switched-reluctance drives may find their 

rightful place - from washing machines to automobiles to airplanes.  Some of the 

strengths of switched-reluctance drives are their rugged and inexpensive rotor 

construction and their simple and reliable power electronics converter.  On the 

negative side, these machines, due to their double saliency, produce large 

amounts of noise and vibrations. 

 
SUMMARY/REVIEW QUESTIONS 
 

1. What are the three broad categories of reluctance drives? 

2. How is the principle on which reluctance drives operate different than that 

seen earlier with other drives? 

3. Write down the reluctance torque expression.  What does the direction of 

torque depend on? 

4. Describe the operating principle of a variable-reluctance stepper-motor. 

5. Describe the operating principle of a permanent-magnet stepper-motor. 

(a) (b) 

(c) 

Figure 14-11 (a) rotor at                ; (b) rotor at            ; (c)            trajectory. θ = -30o θ = 0o λ − i

ia
θ = -30o θ = 0o

ia

θ = 0o

θ = -30o

ia

λa
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6. Describe the operating principle of a hybrid stepper-motor. 

7. What is the equivalent-circuit representation of a stepper-motor? 

8. How is half-stepping and micro-stepping achieved in stepper-motors? 

9. What is the nature of power-processing units in stepper-motor drives? 

10. Describe the operating principles of switched-reluctance drives. 

11. What are the application areas of switched-reluctance drives? 
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PROBLEMS 
 

14-1 Determine the phase excitation sequence, and draw the rotor positions, in a 

variable-reluctance step drive for a counter-clockwise rotation. 

14-2 Repeat Problem 14-1 for a permanent-magnet stepper-motor drive. 

14-3 Repeat Problem 14-1 for a hybrid stepper-motor drive. 

14-4 Describe the half-step operation in a permanent-magnet stepper-motor drive. 

14-5 Describe the half-step operation in a hybrid stepper-motor drive. 
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CHAPTER  15 
 
 

ENERGY EFFICIENCY OF 
ELECTRIC DRIVES AND 
INVERTER-MOTOR 
INTERACTIONS 
 
 

15-1 INTRODUCTION 
 

Electric drives have enormous potential for improving energy efficiency in 

motor-driven systems.  A market assessment of industrial electric-motor systems 

in the United States, available in January, 1999, contains some startling, call-for-

action statistics: 

 

• Industrial motor systems consume 25 percent of the nation’s electricity, 

making them the largest single electrical end-use.   

• Potential yearly energy savings using mature, proven and cost-effective 

technologies could equal the annual electricity use in the entire state of 

New York.   

 

To achieve these energy savings would require a variety of means, but chief 

among them are the replacement of standard-efficiency motors by premium-

efficiency motors and the use of electric drives to improve system efficiencies. 

 

The objective of this chapter is to briefly discuss the energy efficiencies of 

electric motors and electric drives over a range of loads and speeds.  Since 

induction machines are the “workhorses” of industry, the discussion is limited to 

induction motors and induction-motor drives.  The economics of investing in 
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energy-efficient means are discussed.  The interactions between induction motors 

and PWM inverters are briefly described as well. 

 

The bulk of the material in this chapter is based on References [1] and [2].  A 

survey of the recent status and future trends is provided in [3].  Readers are urged 

to look at Reference [4], an excellent source of information on the potential of 

achieving higher energy efficiencies using permanent-magnet machines. 

 

15-2 THE DEFINITION OF ENERGY EFFICIENCY IN ELECTRIC 
DRIVES 

 

As we briefly discussed in Chapter 6, the efficiency of an electric drive driveη  at an 

operating condition is the product of the corresponding motor efficiency motorη  

and the PPU efficiency PPUη : 

 

 drive motor PPUη η η= ×        (15-1) 

 

In Eq. 15-1, note that motorη  is the efficiency of a PPU-supplied motor.  The 

output voltages of a power-processing unit consist of switching frequency 

harmonics, which usually lower the motor efficiency by one to two percentage 

points compared to the efficiency of the same motor when supplied by a purely 

sinusoidal source. 

 

In the following section, we will look at the loss mechanisms and the energy 

efficiencies of induction motors and power-processing units. 

 

15-3 THE ENERGY EFFICIENCY OF INDUCTION MOTORS WITH 
SINUSOIDAL EXCITATION 

 

Initially, we will look at various loss mechanisms and energy efficiencies of 

motors with sinusoidal excitation, while later we will discuss the effects of 

switching-frequency harmonics of the PPU on motor losses. 
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15-3-1 Motor Losses 
 

Motor power losses can be divided into four categories: core losses, winding 

losses, friction and windage losses, and stray-load losses.  We will now briefly 

examine each of these. 

 

15-3-1-1 Magnetic Core Losses 
 

Magnetic losses are caused by hysteresis and eddy-currents in the magnetic core 

of the stator and the rotor.  The losses depend on the frequency and the peak flux-

density.  Eddy-current losses can be reduced by thinner gauge steel laminations, 

between 0.014 and 0.025 inches thick, but at the expense of a higher assembly 

cost.  Hyteresis losses cannot be reduced by thinner laminations but can be 

reduced by utilizing materials such as silicon steels with improved core-loss 

characteristics.  For sinusodal excitation at the rated slip, the loss in the rotor core 

is very small because the frequency of the flux variation in the rotor core is at the 

slip frequency and is very small.  The magnetic core losses typically comprise 20 

to 25 percent of the total motor losses at the rated voltage and frequency. 

 

15-3-1-2 Winding Power Losses 
 

These losses occur due to the ohmic 2( )i R  heating of the stator winding and the 

rotor bars.  The stator-winding loss is due to the sum of the magnetizing current 

and the torque-component of the stator current.  This loss can be reduced by using 

larger cross-section conductors in the stator winding and by reducing the 

magnetizing current component.  In the rotor, reducing the bar resistances causes 

the motor to run closer to the synchronous speed, thus reducing the losses in the 

rotor bars.  At full-load, the losses in the rotor bars are comparable to those in the 

stator winding, but drop to almost zero at no-load (although they do not do so in 

the presence of the switching-frequency harmonics of the PPU).  At full-load, the 

combined stator and the rotor 2( )i R  losses typically comprise 55 to 60 percent of 

the total motor losses. 
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15-3-1-3 Friction and Windage Losses 
 

Losses in the bearings are caused by friction; windage losses are caused by the 

cooling fan and the rotor assembly.  These losses are relatively fixed and can be 

reduced only indirectly by reducing the ventilation needed, which in turn is done 

by lowering other losses.  These losses typically contribute 5 to 10 percent of the 

total motor losses. 

 

15-3-1-4 Stray-Load Losses 
 

This is a catch-all category for the losses which cannot be accounted for in any of 

the other three categories.  These losses are load-dependent and vary as the 

square of the output torque.  They typically contribute 10 to 15 percent of the 

total motor losses. 

 

15-3-2 Dependence of Motor Losses and Efficiency on the Motor Load 
(With the Speed Essentially Constant) 

 

A typical loss versus load curve is shown in Fig. 15-1a.  It shows that the core 

loss and the friction and windage losses are essentially independent of the load, 

whereas the stray-load losses and the winding losses vary as the square of the 

load. 

 

A typical efficiency versus load plot is shown in Fig. 15-1b.  At a nominal 

voltage and frequency, most motors reach their maximum efficiency near the 

rated load.  The efficiency remains nearly constant down to a 50 percent load and 

then falls rapidly down to zero below that level.   

 

15-3-3 Dependence of Motor Losses and Efficiency on Motor Speed (With 
the Torque Essentially Constant) 

 

If an induction machine is operated from a variable-frequency sinusoidal source, 

the motor losses for constant-torque operation (assuming a constant air-gap flux) 

will vary as follows: 

 

• Core losses are reduced at lower speeds because of the reduced frequencies. 
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• Stator-winding losses remain approximately unchanged because constant 

torque requires a constant current. 

• Rotor-bar losses remain approximately unchanged because constant torque 

requires constant bar currents at a constant slip speed. 

• Friction and windage losses are reduced at lower speeds. 

• Stray-load losses are reduced at lower speeds. 

 

We can see that the total losses drop as the frequency is reduced.  Depending on 

whether the losses drop faster or slower than the output, the efficiency of the 

machine can increase or decrease with speed.  The published literature in 40-400 

horsepower machines indicates that for a constant torque, their efficiency is 

nearly constant down to 20 percent speed and exhibits a rapid drop toward zero 

below this speed level.  With pump-loads requiring torque proportional to speed 

squared, the motor efficiency drops gradually to about 50 percent of speed and 

drops rapidly below that speed. 

Load (%)

Friction and windage

Core loss

Load loss

Loss (W)
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Total losses loss2I R

Figure 15-1 (a) Typical loss vs. load characteristics for Design B, 50 hp 4 pole 3-phase
induction motor; (b) typical performance curves for Design B 10 Hp, 4 pole three-
phase induction motor.
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Figure 15-1 (a) Typical loss vs. load characteristics for Design B, 50 hp 4 pole 3-phase
induction motor; (b) typical performance curves for Design B 10 Hp, 4 pole three-
phase induction motor.
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Premium-Efficiency Motors 
 

With the advent of the Energy Policy Act of 1992, several manufactures have 

developed premium-efficiency motors.  In these motors, the motor losses are 

reduced to typically 50 percent of those in the standard NEMA design B motors.  

This reduction in losses is accomplished by using thinner, higher quality 

laminations, reducing the flux-density levels by increasing the core cross-section, 

using larger conductors in the stator windings and in the rotor cage, and carefully 

choosing the air gap dimensions and lamination design to reduce stray-load 

losses.  Because of the reduced value of the rotor resistance, these high-efficiency 

machines have lower full-load slip speeds.  Fig. 15-2 shows a comparison 

between the nominal efficiencies of standard-efficiency motors and premium-

efficiency motors as a function of their power ratings.  The typical increase in 

efficiency is 2 percentage points.   

 

Typically, the power factor of operation associated with premium-efficiency 

motors is similar to that of motors of standard design; the power factor of 

premium-efficiency motors is slightly higher than that of standard motors at 

smaller power ratings and slightly lower at larger power ratings. 
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Figure 15-2 Comparison of efficiencies. 
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15-4 THE EFFECTS OF SWITCHING-FREQUENCY HARMONICS ON 
MOTOR LOSSES 

 

All motor-loss components, except friction and windage, are increased as a result 

of the inverter-produced harmonics associated with the power-processing unit.  

For typical inverter waveforms, the total increase in losses is in the range of 10 to 

20 percent and results in a decrease in energy efficiency of 1 to 2 percentage 

points at full load.  Due to harmonics, increases in the various loss components 

are as follows: 

 

• The core losses are slightly increased because of the slightly higher peak flux 

density caused by the superimposed harmonics.  This increase is often 

negligibly small compared to other losses arising due to inverter harmonics. 

• The stator-winding loss is increased due to the sum of the 2( )i R  losses 

associated with the additional harmonic currents.  At the harmonic 

frequencies, the stator resistance may be larger in bigger machines due to the 

skin effect.  The increase in stator-winding loss is usually significant but it is 

not the largest harmonic loss. 

• The rotor-cage loss is increased due to the sum of 2( )i R  losses associated 

with the additional harmonic currents.  In large machines at harmonic 

frequencies, the deep-bar effect (similar to the skin effect) can greatly 

increase the rotor resistance and cause large rotor 2( )i R  losses.  These losses 

are often the largest loss attributable to harmonics. 

• The stray-load losses are significantly increased by the presence of harmonic 

currents.  These losses are the least understood, requiring considerable 

research activity. 

 

In all cases, the harmonic losses are nearly independent of the load, because the 

harmonic slip is essentially unaffected by slight speed changes (in contrast to the 

fundamental slip). 

 

In pulse-width-modulated inverters, the harmonic components of the output 

voltage depend on the modulation strategy.  Further, the harmonic currents are 

limited by the machine-leakage inductances.  Therefore, inverters with improved 
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pulse-width-modulation strategies and machines with higher leakage inductances 

help to reduce these harmonic losses. 

 

15-4-1 Motor De-Rating Due to Inverter Harmonic Losses 
 

The increase in losses caused by inverter harmonics requires some de-rating of 

the motor in order to avoid overheating.  It is often recommended that this 

“harmonic de-rating” be 10 percent of name-plate rating.  Recently, many 

manufacturers have introduced inverter-grade motors which need not be de-rated. 

 

15-5 THE ENERGY EFFICIENCIES OF POWER-PROCESSING UNITS 
 

The block diagram of a typical power-processing unit is shown in Fig. 15-3.  It 

consists of a diode-rectifier bridge to rectify line-frequency ac into dc and a 

switch-mode inverter to synthesize input dc into three-phase ac of adjustable 

magnitude and frequency.  Approximately 1 to 2 percent of the power is lost as 

conduction losses in the diode-rectifier bridge.  The conduction and switching 

losses in the inverter total approximately 3 to 4 percent of the total power.  

Therefore, typical power loss in the PPU is in the range of 4 to 6 percent, 

resulting in the full-load PPU energy efficiency PPUη  in the range of 94 to 96 

percent. 

 

15-6 ENERGY EFFICIENCIES OF ELECTRIC DRIVES 
 

Very little data is available to show the trend of the efficiencies of electric drives.  

A recent paper, however, shows that at full speed and full torque, the drive 

efficiency from a variety of manufacturers varies in the range of 74 to 80 percent 
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converter
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−
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Figure 15-3 Block diagram of PPUs. 
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for a 3-hp drive and in the range 86 to 89 percent for a 20-hp drive.  At half-

torque and half-speed (at one-fourth power), these efficiencies drop to 53 to 72 

percent for a 3-hp drive and to 82 to 88 percent for a 20-hp drive.  However, it is 

possible to modify the drive PPU so as to keep the energy efficiency high at light 

loads by slightly reducing the amplitude of the fundamental-frequency voltage. 

 

15-7 THE ECONOMICS OF ENERGY SAVINGS BY PREMIUM-
EFFICIENCY ELECTRIC MOTORS AND ELECTRIC DRIVES 

 
In constant-speed applications, energy efficiency can be improved by replacing 

standard-design motors with premium-efficiency motors.  In systems with 

dampers and throttling valves, and in compressors with on/off cycling, the use of 

adjustable-speed drives can result in dramatic savings in energy and thus savings 

in the cost of electricity.  These savings accrue at the expense of the higher initial 

investment of replacing a standard motor, either with a slightly more expensive 

but more efficient-motor, or with an adjustable-speed electric drive.  Therefore, a 

user must consider the economics of initial investment - the payback period, at 

which the initial investment will have paid for itself, and the subsequent savings 

are “money-in-the-bank.” 

 

15-7-1 The Present Worth of Savings and the Payback Period 
 

The energy savings saveE  take place every year over the period that the system is 

in operation.  The present worth of these energy savings depends on many 

factors, such as the present cost of electricity, the rate of increase of the electricity 

cost, and the rate of investment of the money that could have been invested 

elsewhere.  Inflation is another factor.  Based on these factors, the present worth 

of the savings over the lifetime of the system can be obtained and compared to 

the additional initial investment.  For a detailed discussion of this, Reference [5] 

is an excellent source.  However, we can get an approximate idea of the payback 

period of the additional initial investment, if we ignore all of the previously 

mentioned factors and simply divide the additional initial investment by the 

yearly operational savings.  This is illustrated by the following example. 
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�  Example 15-1   Calculate the payback period for investing in a premium-

efficiency motor that costs $300 more than the standard motor, given the 

following parameters:  the load demands a power of 25 kW, the efficiency of the 

standard motor is 89 percent, the efficiency of the premium-efficiency motor is 92 

percent, the cost of electricity is 0.10 $/kWh, and the annual operating time of the 

motor is 4500 hours. 

 

Solution 

 

(a)  The power drawn by the standard motor would be  

 

0 25.0
28.09

0.89in
motor

P
P kW

η
= = = .   

 

Therefore, the annual cost of electricity would be  

 

 Annual Electricity Cost = 28.09 4500 0.1 $12,640× × = . 

 (b)  The power drawn by the premium-efficiency motor would be  

 

0 25.0
27.17

0.92in
motor

P
P kW

η
= = = .   

 

Therefore, the annual cost of electricity would be  

 

 Annual Electricity Cost = 27.17 4500 0.1 $12,226× × = . 

Thus, the annual savings in the operating cost = 12,640 - 12,226 = $414.  

Therefore, the initial investment of $300 would be paid back in 

 

 
300

12 9 months
414

× � .       �  

An excellent source for comparing the efficiencies and the list prices of a very 

large number of motors, including those from most common manufacturers, is 

Reference [6]. 
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15-8 THE DELETERIOUS EFFECTS OF THE PWM-INVERTER 
VOLTAGE WAVEFORM ON MOTOR LIFE 

 

In supplying motors with PWM inverters, there are certain factors that users must 

be aware of.  The additional harmonic losses due to the pulsating waveforms have 

already been discussed.  If the motor is not specifically designed to operate with 

PWM inverters, it may be necessary to de-rate it (by a factor of 0.9) in order to 

accommodate addition harmonic losses without exceeding the motor’s normal 

operating temperature. 

 

The PWM-inverter output, particularly due to the ever-increasing switching 

speeds of IGBTs (which are good for keeping switching losses low in inverters), 

results in pulsating voltage waveforms with a very high /dv dt .  These rapid 

changes in the output voltage have several deleterious effects: they stress the 

motor-winding insulation, they cause the flow of currents through the bearing 

(which can result in pitting), and they cause voltage doubling at the motor 

terminal due to the long cables between the inverter and the motor.  One practical 

but limited solution is to attempt to slow down the switching of IGBTs at the 

expense of higher switching losses within the inverter.  The other solution, which 

requires additional expense, is to add a small filter between the inverter and the 

motor.  

 

SUMMARY/REVIEW QUESTIONS 
 

1. What is the definition of energy efficiency of electric drives? 

2. What are the various mechanisms of losses in motors, assuming a sinusoidal 

excitation? 

3. How do the losses and the efficiency depend on motor speed, assuming a 

constant torque loading? 

4. What are premium-efficiency motors?  How much more efficient are they, 

compared to standard motors? 

5. What are the effects of switching-frequency harmonics on the motor?  How 

much should the motor be de-rated? 

6. What is the typical range associated with the energy efficiency of power-

processing units and of overall drives? 
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7. Discuss the economics and the payback period of using premium-efficiency 

motors. 

8. Describe the various deleterious effects of PWM-inverter output voltage 

waveforms.  Describe the techniques for mitigating these effects. 
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PROBLEMS 
 

15-1 Repeat Example 15-1 if the motor runs fully loaded for one-half of each 

day and is shut off for the other half.   
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CHAPTER  16 
 

POWERING ELECTRIC 
DRIVES: POWER 
QUALITY ISSUES 
 
 

16-1 INTRODUCTION 
 

Electric drives, except in a few applications such as electric and electric-hybrid 

vehicles, get their power from the utility source, as shown by the block diagram 

in Fig. 16-1.  Unless remedial action is taken, this power is drawn by means of 

highly distorted currents, which have a deleterious effect on the power quality of 

the utility source.  On the other hand, power system disturbances in the utility 

source can disrupt electric drive operation.  Both of these issues are examined in 

this chapter. 

 

16-2 DISTORTION AND POWER FACTOR 
 

To quantify distortion in the current drawn by electric drives, it is necessary to 

define certain indices.  As a base case, consider the linear R L−  load shown in 

Fig. 16-2a which is supplied by a sinusoidal source in steady state.  The voltage 

and current phasors are shown in Fig. 16-2b, where φ  is the angle by which the 

current lags the voltage.  Using rms values for the voltage and current 

magnitudes, the average power supplied by the source is 

 

 coss sP V I φ=         (16-1) 
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The power factor ( )PF  at which power is drawn is defined as the ratio of the real 

average power P to the product of the rms voltage and the rms current: 

 

 cos
s s

P
PF

V I
φ= =     (using Eq. 16-1)    (16-2) 

 

For a given voltage, from Eq. 16-2, the rms current drawn is 
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Figure 16-1 Block diagram of an electric drive. 

Figure 16-2 Voltage and current phasors in a simple R-L circuit.
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( )s

s

P
I

V PF
=         (16-3) 

 

This shows that the power factor PF and the current sI  are inversely 

proportional.  The current flows through the utility distribution lines, 

transformers, and so on, causing losses in their resistances.  This is the reason 

why utilities prefer unity power factor loads that draw power at the minimum 

value of the rms current. 

 

16-2-1 RMS Value of Distorted Current and the Total Harmonic Distortion 
(THD) 

 

The sinusoidal current drawn by the linear load in Fig. 16-2 has zero distortion.  

However, electric drives draw currents with a distorted waveform such as that 

shown by ( )si t  in Fig. 16-3a.  The utility voltage ( )sv t  is assumed to be 

sinusoidal.  The following analysis is general, applying to the utility supply that is 

either single-phase or three-phase, in which case the analysis is on a per-phase 

basis. 

 

The repetitive waveform of the current ( )si t  in Fig. 16-3a can be expressed in 

terms of its Fourier components: 

 

 1
2

( )

( ) ( ) ( )

distortion

s s sh
h

i t

i t i t i t
∞

=

= + ∑
�����

       (16-4) 

 

(a) (b)

Figure 16-3 Current drawn by an electric drive (a) phase current and its fundamental 
component; (b) distortion component.
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where the dc component is assumed to be zero and 1( )si t  is the fundamental (line-

frequency) component, shown dotted in Fig. 16-3a.  Some of the harmonic 

frequencies in Eq. 16-4 may be absent.  From Eq. 16-4, the distortion component 

in the current is the difference between ( )si t  and its fundamental-frequency 

component: 

 

 1
2

( ) ( ) ( ) ( )distortion s s sh
h

i t i t i t i t
∞

=

= − = ∑      (16-5) 

 

The distortion component is plotted in Fig. 16-3b.  In a waveform repeating with 

the line-frequency 1f  and the time-period 1 1( 1/ )T f= , the components in the 

expression of Eq. 16-5 are at the multiple h of the fundamental frequency; for 

example, the 3rd harmonic ( 3)h =  is at the 180 Hz−  frequency in a 60 Hz−  

system. 

 

In the following derivation, we will use this basic concept: in a repetitive 

waveform, the integral of the products of the two harmonic components 

(including the fundamental) at unequal frequencies, over the repetition time-

period, equals zero: 

 

 
1 2

1

( ) ( ) 0h h

T

f t g t dt⋅ ⋅ =∫   1 2h h≠      (16-6) 

 

To obtain the rms value of ( )si t  in Fig. 16-3a, we will apply the basic definition 

of rms: 

 

 
1

2

1

1
( )s s

T

I i t dt
T

= ⋅∫        (16-7) 

 

where, from Eq. 16-4, 

 

 2 2 2 2
1 1

2 2

( ) products of cross-frequency termss s sh s sh
h h

i i i i i
∞ ∞

= =

= + = + +∑ ∑  (16-8) 
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Substituting Eq. 16-8 into Eq. 16-7 and recognizing that each integral of the 

cross-frequency product terms equals zero (in accordance with Eq. 16-6), 

 

 
1 1

2 2
1

2 2
1

21 1

1 1
( ) ( )

s distortion

s s sh
hT T

I I

I i t dt i t dt
T T

∞

=

= ⋅ + ⋅∑∫ ∫
����� �������

     (16-9) 

 

Therefore, 

 

 2 2
1s s distortionI I I= +                  (16-10) 

 

where the rms values of the fundamental-frequency component and the distortion 

component are as follows: 

 

 
1

2
1 1

1

1
( )s s

T

I i t dt
T

= ⋅∫                  (16-11) 

 

and 

 

 
1

2

2 2

2 21

1
( )

sh

distortion sh sh
h hT

I

I i t dt I
T

∞ ∞

= =

 
= ⋅ =   

∑ ∑∫
�������

 (using Eq. 16-6)         (16-12) 

 

Eq. 16-12 shows that the rms value of the distortion component in Fig. 16-3b can 

be obtained from the rms values of individual harmonic components. 

 

Based on the rms values of the fundamental and the distortion components in the 

current ( )si t , a distortion index called the Total Harmonic Distortion (THD) is 

defined in percentage.  This index can be expressed in several ways based on the 

previous equations: 
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1

2 2
1

1

2

2

1

% 100

100

100

distortion

s

s s

s

sh
h

s

I
THD

I

I I

I

I

I

∞

=

= ×

−
= ×

= ×
∑

                (16-13) 

 

�  Example 16-1   A current si  of square waveform is shown in Fig. 16-4a.  

Calculate and plot its fundamental frequency component and its distortion 

component.  What is the %THD associated with this waveform? 

 

Solution     From Fourier analysis, ( )si t  can be expressed as 

 

 1 1 1 1

4 1 1 1
(sin sin 3 sin 5 sin 7 .....)

3 5 7si I t t t tω ω ω ω
π

= + + + + . 

 

The fundamental frequency component and the distortion component are plotted 

in Figs. 16-4b and 16-4c.  From the above Fourier series, the rms value of the 

fundamental-frequency component is 
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1 4
( ) 0.9

2
sI I I

π
= = . 

1T
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Figure 16-4 Example 16-1.
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Since the rms value sI  of the square waveform is equal to I , the rms value of the 

distortion component can be calculated from Eq. 16-10 as 

 

 2 2 2 2
1 (0.9 ) 0.436distortion s sI I I I I I= − = − = . 

 

Therefore, using the definition of THD, 

 

1

0.436
% 100 100 48.4%

0.9
distortion

s

I I
THD

I I
= × = × = .    �  

 

16-2-2 The Displacement Power Factor (DPF) and Power Factor (PF) 
 

Next, we will consider the power factor at which the power is drawn by the load 

with a distorted current waveform such as that shown in Fig. 16-3a.  As before, it 

is reasonable to assume that the utility-supplied line-frequency voltage ( )sv t  is 

sinusoidal, with an rms value of sV  and a frequency 1
1( )

2
f

ω
π

= .  Based on Eq. 16-

6, which states that the product of the cross-frequency terms has a zero average, 

the average power P drawn by the load in Fig. 16-3a is due only to the 

fundamental-frequency component of the current: 

 

 
1 1

1
1 1

1 1
( ) ( ) ( ) ( )s s s s

T T

P v t i t dt v t i t dt
T T

= ⋅ ⋅ = ⋅ ⋅∫ ∫               (16-14) 

 

Therefore, in contrast to Eq. 16-1 for a linear load, in a load which draws 

distorted current, 

 

 1 1coss sP V I φ=                  (16-15) 

 

where 1φ  is the angle by which the fundamental-frequency current component 

1( )si t  lags behind the voltage, as shown in Fig. 16-3a.  At this point, another term 

called the Displacement Power Factor (DPF) needs to be introduced, where 

 



 16-8 

 1cosDPF φ=                   (16-16) 

 

Therefore, using the DPF in Eq. 16-15, 

 

 1( )s sP V I DPF=                  (16-17) 

 

In the presence of distortion in the current, the meaning and therefore the 

definition of the power factor, at which the real average power P is drawn, 

remains the same as in Eq. 16-2, that is, the ratio of the real power to the product 

of the rms voltage and the rms current: 

 

 
s s

P
PF

V I
=                   (16-18) 

 

Substituting Eq. 16-17 for P into Eq. 16-18, 

 

 1 ( )s

s

I
PF DPF

I
=                  (16-19) 

 

In linear loads which draw sinusoidal currents, the current-ratio 1( / )s sI I  in Eq. 

16-19 is unity, hence PF DPF= .  Eq. 16-19 shows the following: the higher the 

distortion in the current waveform, the lower the power factor compared to the 

DPF.  Using Eq. 16-13, the ratio 1( / )s sI I  in Eq. 16-19 can be expressed in terms 

of the Total Harmonic Distortion as 

 

 1

2

1

1
s

s

I

I THD
=

+
                 (16-20) 

 

Therefore, in Eq. 16-19, 

 

 
2

1

1
PF DPF

THD
= ⋅

+
                (16-21) 
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The effect of THD on the power factor is shown in Fig. 16-5 by plotting, 

( / )PF DPF  versus THD.  It shows that even if the displacement power factor is 

unity, a total harmonic distortion of 100 percent (which is possible in drives 

unless corrective measures are taken) can reduce the power factor to 

approximately 0.7 (or 
1

0.707
2

=  to be exact), which is unacceptably low. 

 

16-2-3 Deleterious Effects of Harmonic Distortion and a Poor Power Factor 
 

There are several deleterious effects of high distortion in the current waveform 

and the poor power factor that results as a consequence.  These are as follows: 

 

• Power loss in utility equipment such as distribution and transmission lines, 

transformers, and generators increases, possibly to the point of overloading 

them.   

 

• Harmonic currents can overload the shunt capacitors used by utilities for 

voltage support and may cause resonance conditions between the capacitive 

reactance of these capacitors and the inductive reactance of the distribution 

and transmission lines.  

 

Figure 16-5 Relation between PF/DPF and THD. 
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• The utility voltage waveform will also get distorted, adversely affecting other 

linear loads, if a significant portion of the load supplied by the utility draws 

power by means of distorted currents. 
 

16-2-3-1 HARMONIC GUIDELINES 
 

In order to prevent degradation in power quality, recommended guidelines (in the 

form of the IEEE-519) have been suggested by the IEEE (Institute of Electrical 

and Electronics Engineers).  These guidelines place the responsibilities of 

maintaining power quality on the consumers and the utilities as follows: 1) on the 

power consumers, such as the users of electric drives, to limit the distortion in the 

current drawn, and 2) on the utilities to ensure that the voltage supply is 

sinusoidal with less than a specified amount of distortion. 

 

The limits on current distortion placed by the IEEE-519 are shown in Table 16-1, 

where the limits on harmonic currents, as a ratio of the fundamental component, 

are specified for various harmonic frequencies.  Also, the limits on the THD are 

specified.  These limits are selected to prevent distortion in the voltage waveform 

of the utility supply.  Therefore, the limits on distortion in Table 16-1 depend on 

the “stiffness” of the utility supply, which is shown in Fig. 16-6a by a voltage 

source sV  in series with an internal impedance sZ .  An ideal voltage supply has 

zero internal impedance.  In contrast, the voltage supply at the end of a long 

distribution line, for example, will have a large internal impedance. 

 

Table 16-1 Harmonic current distortion (Ih/I1)

I ISC / 1

( %)Odd Harmonic Order h in

35 ≤ h23 35h≤ <17 23h≤ <11 17h≤ <h < 11

15 0.

12 0.

10 0.

7 0.

4 0.

7 0.

5 5.

4 5.

35.

2 0.

6 0.

5 0.

4 0.

2 5.

15.

2 5.

2 0.

15.

10.

0 6.

14.

10.

0 7.

0 5.

0 3.

20 0.

15 0.

12 0.

8 0.

5 0.

Distortion(%)
Harmonic

Total

> 1000

100 1000−

50 100−

20 50−

< 20
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To define the “stiffness” of the supply, the short-circuit current scI  is calculated 

by hypothetically placing a short-circuit at the supply terminals, as shown in Fig. 

16-6b.  The stiffness of the supply must be calculated in relation to the load 

current.  Therefore, the stiffness is defined by a ratio called the Short-Circuit-

Ratio (SCR): 

 

 Short-Circuit-Ratio 
1

sc

s

I
SCR

I
=                (16-22) 

 

where 1sI  is the fundamental-frequency component of the load current.  Table 16-

1 shows that a smaller short-circuit ratio corresponds to lower limits on the 

allowed distortion in the current drawn.  For the short-circuit-ratio of less than 20, 

the total harmonic distortion in the current must be less than 5 percent.  A drive 

that meets this limit would also meet the limits of more stiff supplies. 

 

It should be noted that the IEEE-519 does not propose harmonic guidelines for 

individual pieces of equipment but rather for the aggregate of loads (such as in an 

industrial plant) seen from the service entrance, which is also the point-of-

common-coupling (PCC) with other customers.  However, the IEEE-519 is 

frequently interpreted as the harmonic guidelines for specifying individual pieces 

of equipment such as motor drives.  There are other harmonic standards, such as 

the IEC-1000, which apply to individual pieces of equipment. 
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Figure 16-6 (a) Utility supply; (b) short circuit current.
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Figure 16-6 (a) Utility supply; (b) short circuit current.
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16-3 CLASSIFYING THE “FRONT-END” OF ELECTRIC DRIVES 
 

Interaction between the utility supply and electric drives depends on the “front-

ends” (within the power-processing units), which convert line-frequency ac into 

dc.  These front-ends can be broadly classified as follows: 

 

• Diode-bridge rectifiers (shown in Fig. 16-7a) in which power flows only in 

one direction. 

 

• Switch-mode converters (shown in Fig. 16-7b) in which the power flow can 

reverse and the line currents are sinusoidal at the unity power factor. 

 

• Thyristor converters (shown in Fig. 16-7c for dc drives) in which the power 

flow can be made bi-directional. 

All of these front-ends can be designed to interface with single-phase or three-

phase utility systems.  For a detailed description of all of the above, please see 

Reference [1].  In the following discussion, a brief description of basic operating 

principles is supplemented by analysis of results obtained through computer 

simulations. 

 

16-4 DIODE-RECTIFIER BRIDGE “FRONT-ENDS” 
 

Most general-purpose drives use diode-bridge rectifiers, like the one shown in 

Fig. 16-7a, even though they draw currents with highly distorted waveforms and 

the power through them can flow only in one direction.  Diode rectifiers rectify 

line-frequency ac into dc across the dc-bus capacitor, without any control over the 

dc-bus voltage.  For analyzing the interaction between the utility and the drive, 

 

(a) (b) (c) 

Figure 16-7 Front-ends of electric drives . 
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the switch-mode converter and the motor load can be represented by an 

equivalent resistance eqR  across the dc-bus capacitor, as shown in Fig. 16-8.  In 

our theoretical discussion, it is adequate to assume the diodes to be ideal. 

 

In the following subsections, we will consider single-phase as well as three-phase 

diode rectifiers operating in steady state, where waveforms repeat from one line-

frequency cycle 1 1( 1/ )T f=  to the next. 

 

16-4-1 The Single-Phase Diode-Rectifier Bridge 
 

At power levels below a few kW, for example in residential applications, drives 

are supplied by a single-phase utility source.  A commonly-used full-bridge 

rectifier circuit is shown in Fig. 16-8, in which sL  is the sum of the inductance 

internal to the utility supply and an external inductance, which may be 

intentionally added in series.  Losses on the ac side can be represented by the 

series resistance sR .  

 

As shown in Fig. 16-9, at the beginning of the positive half-cycle of the input 

voltage sv , the capacitor is already charged to a dc voltage dv .  So long as dv  

exceeds the input voltage magnitude, all diodes get reverse biased and the input 

current is zero.  Power to the equivalent resistance eqR  is supplied by the energy 

stored in the capacitor up to time 1t .  Beyond 1t , the input current ( )s dri i=  builds 

up, flowing through the diodes 1D  and 2D .  Beyond 2t , the input voltage 

becomes smaller than the capacitor voltage and the input current begins to 

decline, falling to zero at 3t .  Beyond 3t , until one-half cycle later than 1t , the 

Figure 16-8 Full bridge diode rectifier.
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Figure 16-8 Full bridge diode rectifier.
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input current remains zero and the power to eqR  is supplied by the energy stored 

in the capacitor. 

 

At 1
1( )

2

T
t +  during the negative half-cycle of the input voltage, the input current 

flows through the diodes 3D  and 4D .  The rectifier dc-side current dri  continues 

to flow in the same direction as during the positive half-cycle; however, the input 

current s dri i= − , as shown in Fig. 16-9.   

 

The fact that dri  flows in the same direction during both the positive and the 

negative half-cycles represents the rectification process.  In Fig. 16-8 in steady 

state, all waveforms repeat from one cycle to the next.  Therefore, the average 

value of the capacitor current over a line-frequency cycle must be zero so that the 

dc-bus voltage is in steady state.  As a consequence, the average current through 

the equivalent load-resistance eqR  equals the average of the rectifier dc-side 

current; that is, d drI I= . 

 

16-4-1-1 The Effects of the sL  and the dC  on the Waveforms and the THD 

 

As Fig. 16-9 shows, power is drawn from the utility supply by means of a pulse 

of current every half-cycle.  The larger the “base” of this pulse during which the 

current flows, the lower its peak value and the lower the total harmonic distortion.  

This pulse-widening can be accomplished by increasing the ac-side inductance 

sL , as shown in Fig. 16-10a, by carrying out a parametric analysis using a 

t3t2t1

vd

( )dr si i= idr

vs

ωt
0

isis

Figure 16-9 Current and voltage waveforms for the full bridge diode rectifier.
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Figure 16-9 Current and voltage waveforms for the full bridge diode rectifier.
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computer program such as PSpice™ (see Reference [2]).  For the same power 

transfer, waveforms are shown for five values of sL .  Increasing sL  decreases the 

THD; however, it also decreases the average dc-output voltage, as shown in Fig. 

16-10b. 

 

Another parameter under the designer’s control is the value of the dc-bus 

capacitor dC .  At its minimum, it should be able to carry the ripple current (in dri  

and in the current drawn by the switch-mode converters discussed in Chapter 4) 

and keep the peak-to-peak ripple in the dc-bus voltage to some acceptable value, 

for example less than 5 percent of the dc-bus average value.  Assuming that these 

constraints are met, the effect of dC  is shown by means of parametric analysis in 

Figs. 16-11a and 16-11b, which show that the lower the value of dC , the lower 

the THD and the higher the ripple in the dc-bus voltage, respectively. 

 

In practice, it is almost impossible to meet the harmonic limits specified by the 

IEEE-519 by using the above techniques.  Rather, the remedial techniques that 

will be described in section 16-5 are needed to meet the harmonic specifications. 
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16-4-2 Three-Phase Diode-Rectifier Bridge 
 

It is preferable to use a three-phase utility source, except at a fractional kilowatt, 

if such a supply is available.  A commonly-used full-bridge rectifier circuit is 

shown in Fig. 16-12a.   

 

To understand the circuit operation, the rectifier circuit can be drawn as in Fig. 

16-12b.  The circuit consists of a top group and a bottom group of diodes.  

Initially, the effects of sL  and dC  can be ignored.  At least one diode from each 

group must conduct for the input current to flow.  In the top group, all diodes 

have their cathodes connected together.  Therefore, the diode connected to the 

most positive voltage will conduct; the other two will be reverse biased.  In the 

bottom group, all diodes have their anodes connected together.  Therefore, the 

diode connected to the most negative voltage will conduct; the other two will be 

reverse biased. 

 

Ignoring the effects of sL  and dC  and assuming that a resistance is connected 

(a)

(b)

Figure 16-12 (a) Three-phase diode bridge rectifier; (b) circuit redrawn.
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Figure 16-12 (a) Three-phase diode bridge rectifier; (b) circuit redrawn.

1

2

3

4

5

6

+

−
Cd Reqvd

+−

va

vb

vc

Ls

Ls

Ls+−

+−

idr

1

2

3

4

5

6

+

−
Cd Reqvd

+−

va

vb

vc

Ls

Ls

Ls+−

+−

idr

N

1

2

3

4

5

6

P

+−

va

vb

vc

Ls

Ls

Ls+−

+−
idr

+

−
dv



 16-17 

across the dc-side between points P and N, the waveforms can be represented as 

shown in Fig. 16-13.  In Fig. 16-13a, the waveforms (identified by the dark 

portions of the curves) show that each diode, based on the principle described 

above, conducts for 0120 .  The diodes are numbered so that they begin 

conducting sequentially: 1, 2, 3, and so on.   

The waveforms for the voltages Pv  and Nv , with respect to the source-neutral, 

consist of 0120 -segments of the phase voltages, as shown in Fig. 16-13a.  The 

waveform of the dc-side voltage ( )d P Nv v v= −  is shown in Fig. 16-13b.  It 

consists of 060 -segments of the line-line voltages supplied by the utility.  Under 

the assumption that a resistance eqR  is connected across the dc side between 

points P and N, the dc-side current dri  will have a waveform identical to that of 

dv , shown in Fig. 16-13b.  However, for ease of drawing, we will assume that a 

large filter inductor is present on the dc side (between the rectifier and eqR ) so 

that dri  is a pure dc current.  With this assumption, the line currents on the ac-side 

are as shown in Fig. 16-13c.  For example, the phase-a current flows for 0120  

during each half-cycle; it flows through diode 1D  during the positive half-cycle 

and through diode 4D  during the negative half-cycle. 

 

The average value of the dc-side voltage can be obtained by considering only a 
060 -segment in the 6-pulse (per line-frequency cycle) waveform shown in Fig. 

(a)

(b) (c)
Figure 16-13 Voltage and current waveforms in a three phase diode bridge rectifier
(without Cd ).
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Figure 16-13 Voltage and current waveforms in a three phase diode bridge rectifier
(without Cd ).
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16-13b.  Let us consider the instant of the peak in the 060 -segment to be the time-

origin, with the peak equal to 2  times the rms value LLV  of the line-line 

voltage.  The average value dV  can be obtained by calculating the integral from 

/ 6tω π= −  to / 6tω π=  (the area shown by the hatched area in Fig. 16-13b) and 

then dividing by the interval / 3π : 

 

 
/ 6

/ 6

1 3 2
2 cos ( ) 1.35

/ 3d LL LL LLV V t d t V V
π

π

ω ω
π π−

= ⋅ = =∫             (16-23) 

 

This average value is plotted as a straight line in Fig. 16-13b.   

 

In the three-phase rectifier of Fig. 16-12a with the dc-bus capacitor filter, the 

input current waveforms obtained by computer simulations are shown in Fig. 16-

14.  Fig. 16-14a shows that the input current waveform within each half-cycle 

consists of two distinct pulses when sL  is small.  For example, in the ai  

waveform during the positive half-cycle, the first pulse corresponds to the flow of 

dc-side current through the diode pair 1 6( , )D D  and then through the diode pair 

1 2( , )D D .  At larger values of sL , within each half-cycle, the input current 

between the two pulses does not go to zero, as shown in Fig. 16-14b.   

 

The effects of sL  and dC  on the waveforms can be determined by parametric 

analysis, similar to the case of single-phase rectifiers.  The THDs in the current 

(a)

THD = 123.33%. mHsL 0 1= mHsL 5= THD = 18.72%

(b)
Figure 16-14 Effect of Ls variation (a) Ls = 0.1mH; (b) Ls = 5 mH.

(a)

THD = 123.33%. mHsL 0 1= mHsL 5= THD = 18.72%mHsL 5= THD = 18.72%

(b)
Figure 16-14 Effect of Ls variation (a) Ls = 0.1mH; (b) Ls = 5 mH.
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waveforms of Fig. 16-14 are indicated.  The ac-side inductance sL  is required to 

provide a line-frequency reactance 1( 2 )
sL sX f Lπ=  that is greater than 2 percent of 

the base impedance baseZ , which is defined as follows: 

 Base Impedance 
2

3 s
base

drive

V
Z

P
=                (16-24) 

 

where driveP  is the three-phase power rating of the drive and sV  is the rms value of 

the phase voltage.  Therefore, the minimum ac-side inductance should be such 

that 

 

 (0.02 )
sL baseX Z≥ ×                  (16-25) 

 

16-4-3 Comparison of Single-Phase and Three-Phase Rectifiers 
 

Examination of single-phase and three-phase rectifier waveforms, shown in Fig. 

16-9 and Fig. 16-14 respectively, shows the differences in their characteristics.  

Three-phase rectification is a six-pulse rectification process, whereas single-phase 

rectification is a two-pulse process.  Therefore, three-phase rectifiers are superior 

in terms of minimizing distortion in line currents and ripple across the dc-bus 

voltage.  Consequently, as stated earlier, three-phase rectifiers should be used if a 

three-phase supply is available.  However, three-phase rectifiers, just like single-

phase rectifiers, are also unable to meet the harmonic limits specified within the 

IEEE-519 unless remedial actions such as those described in section 16-5 are 

taken. 

 

16-5 POWER-FACTOR-CORRECTED (PFC) INTERFACE 
 

Technical solutions to the problem of distortion in input current have been known 

for a long time.  However, only recently has concern about the deleterious effects 

of harmonics led to the formulation of guidelines and standards, which in turn has 

focused attention on ways of limiting current distortion.   

 

In the following section, power-factor-corrected (PFC) interface, as they are often 

called, are briefly examined for single-phase and three-phase rectification.  It is 
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assumed that the power needs to flow only in one direction - thus the interface 

with bi-directional power flow capability are too expensive (front-ends with bi-

directional power flow capability are discussed in section 16-6). 

 

It should be noted that another way to meet harmonic guidelines is to use active 

filters, which synthesize out-of-phase harmonic currents.  These currents are 

injected into the utility system, thus “neutralizing” the drive-produced harmonic 

currents.  So far, there are very few commercial installations of active filters, but 

these filters represent an economically viable way of mitigating harmonics 

produced by a group of drives and other nonlinear loads. 

 

16-5-1 SINGLE-PHASE PFCs 
 

The operating principle of a commonly-used single-phase PFC is shown in Fig. 

16-15a where, between the utility supply and the dc-bus capacitor, a step-up 

(boost) dc-dc converter is introduced.  This boost converter consists of a 

semiconductor switch such an IGBT, a diode, and a small inductor dL .  By pulse-

width-modulating the on and off intervals of the switch at a constant switching 

frequency, the current Li  through the inductor dL  is shaped to be of the full-

Figure 16-15 Single phase power factor correction (a) circuit; (b) waveforms. 
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wave-rectified waveform, similar to ( )sv t , as shown in Fig. 16-15b.  Removing 

the high switching-frequency ripple with a small filter, the input current si  is 

sinusoidal and in phase with the supply voltage, as shown in Fig. 16-15b.  

Because of the boost converter, it is essential that the dc-bus voltage be greater 

than the peak of the supply voltage: 

 

 ˆ
d sV V>                    (16-26) 

 

A simple feedback circuit controls the input current to be sinusoidal with an 

amplitude such that the dc-bus voltage is regulated to be of a desired value, so 

long as this value is greater than ŝV .  A detailed description of this PFC can be 

found in Reference [1].  The process of designing this PFC feedback control is 

described in Reference [3]. 

 

16-5-2 THREE-PHASE PFCs 
 

Just like single-phase PFCs, where the topology of Fig. 16-15a dominates, three-

phase PFCs in drives can benefit from the three-switch topology shown in Fig. 

16-16, which is described in Reference [4].  This is a boost topology; hence 

 

 ˆ
d LLV V>                   (16-27) 

is

−

+

Vd

Figure 16-16 Three phase power factor correction circuit: Vienna Rectifier. 
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Means to Avoid Transient Inrush Currents at Starting 
 

In drives with rectifier front-ends, it may be necessary to take steps to avoid a 

large inrush of current at the instant the drive is connected to the utility source.  In 

such drives, the dc-bus capacitor is very large and initially has no voltage across 

it.  Therefore, at the instant the switch in Fig. 16-17a is closed to connect the 

drive to the utility source, a large current flows through the diode-bridge rectifier, 

charging the dc-bus capacitor.   

 

This transient current inrush is highly undesirable; fortunately, several means of 

avoiding it are available.  These include using a front-end that consists of 

thyristors discussed later in this chapter or using a series semiconductor switch as 

shown in Fig. 16-17b.  At the instant of starting, the resistance across the switch 

lets the dc-bus capacitor get charged without a large inrush current, and 

subsequently the semiconductor switch is turned on to bypass the resistance. 

 

16-6 FRONT-ENDS WITH BI-DIRECTIONAL POWER FLOW 
 

In stop-and-go applications such as elevators, it is cost-effective to feed the 

energy recovered by regenerative braking of the drive back into the utility supply.  

In such applications, the utility supply is generally three-phase, and therefore we 

will only consider three-phase front-ends. 

 

Fig. 16-18a shows the circuit in which the front-end of the utility is similar to the 

dc-to-ac switch-mode inverter used in induction-motor drives.  In Chapter 12 we 

saw that the power flow through a switch-mode inverter can reverse and such a 

converter can be modeled on an average basis by representing each pole by an 

(a) (b) 
Figure 16-17 Means to avoid inrush current. 
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ideal transformer, as shown in Fig. 16-18b.  In a similar manner, the front-end 

switch-mode converter can be represented on an average basis by ideal 

transformers, as shown in Fig. 16-18b.   

 

The per-phase representation of the overall system at the fundamental frequency 

(hence, the subscript “1”) is shown in Fig. 16-18c, where “o” is the hypothetical 

midpoint of the capacitor dc bus.  The front-end converter is controlled so as to 

Figure 16-18 (a) Front-end with bi-directional power flow capability; (b) average  
model; (c) per-phase equivalent circuits. 
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draw sinusoidal currents at a unity power factor to maintain the dc-bus voltage at 

a predetermined value, as described in Reference [1]. 

 

In the normal motoring mode of the drive, the front-end converter operates in its 

rectifier mode and the converter at the motor-end operates in its inverter mode.  

These modes of operation are interchanged during the regenerative braking of the 

drive and the power is fed into the utility system.  The line currents can be kept 

sinusoidal with a very low THD, within the limits imposed by the IEEE-519. 

 

In these drives, steps similar to those described in section 16-5-3 may be 

necessary to avoid large transient inrush currents at starting. 

 

16-7 PHASE-CONTROLLED THYRISTOR CONVERTERS FOR DC-
MOTOR DRIVES 

 

In high performance dc-motor drives, as discussed in Chapter 7, power-

processing units use switch-mode converters to supply adjustable dc voltage and 

current to the dc motor, and the front-end consists of the diode-bridge rectifier 

discussed earlier.  However, in dc drives where performance in terms of torque 

ripple and speed of response is not critical, using phase-controlled thyristor 

converters, which are shown by the block diagram of Fig. 16-7c, can be more 

economical.  In this section, we will examine the operating principles of thyristor 

converters and their impact on the power quality of the utility system. 

 

16-7-1 Thyristors (SCRs) 
 

Thyristors are 4-layer (n-p-n-p) devices, sometimes referred to by their trade 

name of Silicon Controlled Rectifiers (SCRs).  The operation of thyristors is 

illustrated by means of the simple circuit in Fig. 16-19a.  At 0tω = , the positive-

half-cycle of the input voltage begins, beyond which a positive voltage appears 

across the thyristor (anode A is positive with respect to cathode K).  With a 

positive-polarity voltage across the thyristor, the start of its conduction can be 

controlled by means of the delay tω α=  (called phase control) at which a 

positive pulse of current is applied to the thyristor gate terminal.  This delay angle 

α , at which the gate current pulse is applied, is defined with respect to 0tω =  

(which is referred to as the instant of natural conduction). 
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Once the thyristor begins to conduct, it latches on and the gate current can be 

removed.  Once in the conducting state, a thyristor behaves like a diode with a 

very small voltage drop of the order of 1 to 2 volts across it (we will idealize it to 

be zero).  The current through the thyristor cannot be interrupted by means of its 

gate terminal.  The waveforms in Fig. 16-19b show that the current becomes zero 

sometime in the negative half-cycle of the input voltage.  The current cannot 

reverse and remains zero, thus allowing the gate terminal to regain control.  In the 

next cycle of the input voltage, the current conduction again depends on the 

instant during the positive half-cycle at which the gate pulse is applied.  By 

controlling the delay angle, we can control the average voltage across the 

resistance.  This principle can be extended to the practical circuits discussed here. 
 

16-7-2 Single-Phase, Phase-Controlled Thyristor Converters 
 

To ensure that the dc (average) component of the current drawn from the utility 

source is zero, the full-bridge phase-controlled converter shown in Fig. 16-20 is 

used.  To help us understand the operating principle, this circuit is simplified as 

shown in Fig. 16-21a, where the ac-side inductance sL  is ignored and the dc 

motor is represented as drawing a constant current dI .  The waveforms are shown 

in Fig. 16-21b.  Thyristors (1 and 2) and thyristors (3 and 4) are treated as pairs.  

The thyristor pairs are supplied gate pulses which are delayed from their 

respective instants of natural conduction by an angle α .  In the positive-half 

(a) (b)

Figure 16-19 (a) Thyristor controlled half bridge rectifier; (b) waveforms
associated  with it.
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Figure 16-19 (a) Thyristor controlled half bridge rectifier; (b) waveforms
associated  with it.
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cycle of the input voltage, as soon as thyristors 1 and 2 are gated at tω α=  they 

immediately begin to conduct.  Therefore, in Fig. 16-21b, 

 

 ( ) ( ) and ( )d s s dv t v t i t I= =  
2

t
πα ω α< ≤ +              (16-28) 

These relationships hold true until 
2

πα +  in the negative half-cycle of the input 

voltage, when thyristors 3 and 4 are gated.  At this instant, negative input voltage 

applies a forward-polarity voltage across thyristors 3 and 4, which, upon gating, 

immediately takeover current from thyristors 1 and 2 (immediately because of the 

assumption of zero sL ).  With thyristors 3 and 4 conducting, 

 

 ( ) ( ) and ( )d s s dv t v t i t I= − = −  
2

t
πα ω α π+ < ≤ +             (16-29) 

 

This holds true for one half-cycle, until the next cycle begins with the gating of 

thyristors 1 and 2. 

 

Figure 16-20 Full-bridge phase-controlled converter. 
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Thyristors 1 and 2 continue conducting for an interval α , even after the input 

voltage has become negative.  Similarly, thyristors 3 and 4 continue conducting 

even after the input voltage has become positive.  Increasing the delay angle α  

would reduce the average dc-side voltage dV  while simultaneously shifting the 

input current ( )si t  waveform farther away with respect to the input voltage 

waveform. 

 

The average value dV  of the voltage across the motor terminal can be obtained by 

averaging the ( )dv t  waveform over one half-cycle during 
2

t
πα ω α< ≤ + : 

 

 
21 2 2

2 sin ( ) cos 0.9 cosd s s sV V t d t V V

πα

α

ω ω α α
π π

+

= ⋅ = =∫             (16-30) 

 

where sV  is the rms value of the input voltage.   

 

The plot in Fig. 16-22a shows that for the delay angle α  in a range of 00  to 090 , 

dV  has a positive value and the converter operates as a rectifier, with the power 

flowing into the dc motor.  This corresponds to the first-quadrant operation of the 

dc machine, motoring in the forward direction, shown in Fig. 16-22b and 

discussed in Chapter 7.   

 

 

Figure16-22 (a) Variation of Vd with delay angle     ; (b) operating quadrants of the  
converter. 
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For values of α  greater than 090 , dV  has a negative value and the converter 

operates as an inverter, with the power flowing out of the dc motor.  This 

corresponds to the fourth-quadrant operation of the dc machine, regenerative 

braking in the reverse direction of rotation, as discussed in Chapter 7.  In practice, 

the upper limit on α  is somewhat below 0180  to avoid a phenomenon known as 

commutation failure. 

 

On the ac-side, the fundamental-frequency component 1( )si t  of the input current 

is shown in Fig. 16-23a which has an rms value 1sI , where 

 

 1 0.9s dI I=                   (16-31) 

 

Fig. 16-23b shows the phasors, where 1sI  lags behind sV  by an angle 1φ α= .  

Therefore, the power input from the ac-side is 

 

 1 coss sP V I α=                  (16-32) 
 

which, assuming that there is no power loss in the thyristor converter, equals the 

power to the dc machine.  Using Eqs. 16-30 and 16-31, 

 

 
�

1

( 0.9 ) ( )

cos 0.9 cos
d d

s s s d d d

I V

P V I V I V Iα α
= =

= = =
�����

              (16-33) 

 

 

(b) 
Figure 16-23(a) AC side waveforms; (b) current and voltage phasors. 
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16-7-3 The Effect of sL  on Current Commutation 

 

Previously, our assumption was that the ac-side inductance sL  was zero.  In 

practice, this inductance is usually required to be at least 5 percent of the base 

impedance (the base impedance is defined in a similar fashion as in Eqs. 16-24 

and 16-25).  In the presence of this inductance, the input current takes a finite 

amount of time to reverse its direction, as the current “commutates” from one 

thyristor pair to the next.   

 

From basic principles, we know that changing the current through the inductor sL  

in the circuit of Fig. 16-24a requires a finite amount of volt-seconds.  The dc-side 

is still represented by a dc current dI .  The waveforms are shown in Fig. 16-24b, 

where thyristors 3 and 4 are conducting prior to tω α= , and s di I= − .  At tω α= , 

thyristors 1 and 2 are gated on and immediately begin to conduct.  However, the 

current through them doesn’t jump instantaneously as in the case of 0sL =  where 

si  instantaneously changed to s di I= + .  With a finite sL , during a short interval 

called the commutation interval u, all thyristors conduct, causing the voltage 

across sL  to be equal to sv .  The volt-radians needed to change the inductor 

current from ( )dI−  to ( )dI+  can be calculated by integrating the inductor voltage 

( )L s s

d
v L i

dt
=  from α  to ( )uα + , as follows: 
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Figure 16-24 (a) Thyristor converter along with source inductance; (b) waveforms. 
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 ( ) 2
d

d

Iu

L s s s d

I

v d t L di L I
α

α

ω ω ω
+

−

= =∫ ∫                (16-34) 

 

Therefore, the above volt-radians are “lost” every half-cycle from the integral of 

the dc-side voltage waveform, as shown by the shaded area in Fig. 16-24b.  This 

corresponds to a “lossless” voltage drop of 

 

 
2

d s dV L Iω
π

∆ =                  (16-35) 

 

This voltage is lost from the dc-side average voltage in the presence of sL .  

Therefore, the average voltage is smaller than that in Eq. 16-30: 

 

 
2

0.9 cosd s s dV V L Iα ω
π

= −                 (16-36) 

 

16-7-4 Three-Phase, Phase-Controlled Thyristor Converters 
 
DC drives with a three-phase utility input are generally used at higher power 

ratings.  Three-phase converters use six thyristors, as shown in Fig. 16-25a.  A 

simplified converter is shown in Fig. 16-25b, where the thyristors are divided into 

a top group and a bottom group, similar to the three-phase diode rectifiers.  These 

converters are systematically analyzed in Reference [1].  In the continuous-

current conduction mode, the average voltage dV  in three-phase converters can be 

derived to be 

 

 
3

1.35 cosd LL s dV V L Iα ω
π

= −                 (16-37) 

 

where LLV  is the rms value of the line-line voltages, and the delay angle α  for 

each thyristor is measured from the respective instant of natural conduction.  

Further details can be found in Reference [1]. 
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16-7-5 Thyristor Converters for Four-Quadrant Operation 
 

The following discussion applies to both single-phase and three-phase inputs.  

Two thyristor converters connected in anti-parallel, as shown in Fig. 16-26a, can 

deliver the 4-quadrant operation shown in Fig. 16-26b.  While discussing a 

single-phase thyristor converter, we observed that converter 1 operates in the 

rectifier mode while the dc-machine operates as a motor in the forward direction; 

it operates in the inverter mode during regenerative braking of the dc machine, 

while rotating in the reverse direction.  Similarly, converter 2 operates in the 

rectifier mode while the dc-machine operates as a motor in the reverse direction; 

it operates in the inverter mode during regenerative braking of the dc machine, 

while rotating in the forward direction. 

 

(a) 

Figure  16-25 (a) Three phase thyristor converte r (b) idealized and redrawn. 
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16-7-6 The Power Quality Impact of Thyristor Converters 
 

Both single-phase and three-phase thyristor converters draw power by means of 

non-sinusoidal currents with total harmonic distortion above the limits specified 

by the IEEE-519.  These converters suffer from the additional serious drawbacks 

described below. 

 

16-7-6-1 Poor Displacement Power Factor (DPF) at Low Speeds 
 

As discussed in Chapter 7, dc motors operating at low speeds have a low induced 

back-emf aE .  Therefore, the required terminal voltage dV  is also low.  This is 

accomplished by increasing the delay angle α  towards the 090  value.  The input 

current waveform, with respect to the phase voltage waveform, shifts by the delay 

angle; hence both the displacement power factor and the power factor become 

extremely poor at low speeds in thyristorized dc drives with single-phase and 

three-phase inputs. 

 

16-7-6-2 The Notching of Input Voltage Waveforms 
 

The ac-side inductance consists of the internal inductance 1sL  of the utility supply 

and an external inductance 2sL  added in series: 

 

 1 2s s sL L L= +                   (16-38) 

 

This is shown in Fig. 16-27a.  Other loads may be connected at the point-of-

common-coupling (PCC), as shown. 

 

As was discussed in detail for thyristor converters with single-phase inputs, 

during current commutation, all thyristors conduct, causing a short-circuit on the 

input line through the ac-side inductance.  This results in undesirable notches, as 

shown in Fig. 16-27b, in the waveform of the voltage across other loads, 

potentially causing them to malfunction.  Similar voltage notching can be 

observed in 3-phase converters. 
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16-8 THE EFFECTS OF POWER SYSTEM DISTURBANCES ON 
ELECTRIC DRIVES 

 

Power electronics has matured to the extent that the mean time between failure 

(MTBF) of drives is several tens of thousands of hours.  However, interruption in 

drive operation is much more frequent due to power system disturbances in the 

form of power outages and reduction (sag) in the utility voltages.   

 

Electric drives should be designed to tolerate some disturbances without being 

effected.  The “tolerance” limits developed by the Computer Business Equipment 

Manufacturers Association (CBEMA) are shown in the CBEMA curve in Fig. 16-

28.  The CBEMA curve has been adopted by some drive manufacturers in 

designing the drives.  It shows that a drive should be able to tolerate a complete 

power outage for 20 ms, followed by a voltage sag of 30 percent for 0.5 s , 20 

percent for 10 s , and 10 percent in steady state.  Similarly, it specifies the upper 

limits on the input voltage that should be tolerated. 
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Figure 16-27 (a) Effect of source inductance on input voltage; (b) voltage notching 
at the point of common coupling.
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16-8-1 Power Outages, Voltage “Sags,” and Ride-Through Capability 
 

In applications where it is critical that drive operation not be interrupted, 

uninterruptible power supplies (UPS) consisting of energy storage means such as 

batteries are used as a backup power source during prolonged power outage.  

 

Using UPS is an expensive solution, reserved only for very critical applications.  

Since a voltage “sag” for a few cycles is far more likely to occur than a complete 

and prolonged power outage, it is possible to devise cheaper solutions (compared 

to UPS) for tolerating voltage disturbances outside the CBEMA curve.  One such 

solution is the Dynamic Voltage Restorer (DVR) shown in Fig. 16-29 in a per-

phase block-diagram form.  In a DVR, a voltage is injected in series with the 

utility supply to make up for the voltage “sag.”  The series voltage is then 

synthesized by means of a power electronics converter, to which the power is 

supplied by the energy stored in the capacitor. 

Figure 16-28 The CBEMA curve. 
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In most drive applications, using a UPS or a DVR is economically unfeasible.  In 

such cases, the capability to ride-through power outages or voltage sags outside 

the CBEMA limits can be built into the drive’s power-processing unit (PPU).  

One suggested control modification to the PPU is to make the machine go into the 

regenerative-braking mode during the power disturbance, thus supplying the 

kinetic energy associated with the motor-load inertia to hold up the dc-bus 

voltage.  Ultra-capacitors are also being considered for the dc bus.  Other 

techniques for ride-through are discussed in Reference [5] 

 

16-8-2 Nuisance Tripping Due to Over-Voltages Caused by Capacitor 
Switching 

 

The switching in of capacitors in the distribution system of a utility can cause 

transient over-voltages at the input of the drives and thus across the dc-bus 

capacitor.  These issues need to be resolved in collaboration with the friendly 

utility. 

 

SUMMARY/REVIEW QUESTIONS 
 

1. How is the power factor (PF) defined with linear loads? 

2. How does the definition of power factor change with loads which draw 

distorted currents? 

 

Figure 16-29 Dynamic voltage restorer. 
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3. What is meant by the distortion component of the current? 

4. How is the Total Harmonic Distortion (THD) defined? 

5. What is the Displacement Power Factor (DPF)?  What is it equal to in linear 

loads which draw sinusoidal waveform currents? 

6. What is the power factor equal to in terms of the displacement power factor? 

7. What are the deleterious effects of a high THD and a poor power factor? 

8. What are the various harmonic guidelines?  Briefly describe the IEEE-519 

and the rationale behind it. 

9. What is the most common type of “front-end” used to interface drives with 

single-phase and three-phase utility systems? 

10. Briefly describe the operation of single-phase diode-rectifier bridges with a 

large capacitor at the dc output.  Why is the current drawn by these highly 

distorted?  What is the impact of the values of sL  and dC  on the input current 

waveform? 

11. Repeat Question 10 for a three-phase diode-rectifier bridge. 

12. How do single-phase and three-phase rectifier bridges compare in terms of 

performance?  At higher power levels, if there is a choice available, why is 

one much more favorable than the other? 

13. Describe the operating principle of the single-phase power-factor-corrected 

(PFC) circuit, where the power flow is unidirectional. 

14. What is a good solution for a three-phase PFC in systems where the power is 

not fed back into the utility grid? 

15. In the case of a bi-directional power flow, assuming a three-phase utility 

input, draw the complete topology of the power-processing unit.  How can we 

analyze it in steady state on a per-phase basis? 

16. For which type of motor drives are thyristor converters still used? 

17. Describe phase control and its effect on the simplest possible thyristor circuit. 

18. Describe the operation of a single-phase, full-bridge thyristor converter.  How 

is the average value of the output voltage controlled? 

19. Describe current commutation and the effect of sL  on the operation of a 

single-phase, full-bridge thyristor converter. 

20. How is it possible to achieve four-quadrant operation using thyristor 

converters?  Describe the role of each converter, based on the quadrant in 

which the “front-end” is operating. 
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21. What are the two worst power quality impacts of thyristor converter “front-

ends”? 

22. Briefly describe the impact of utility disturbances on the proper operation of 

drives.  Also, briefly describe various mitigation measures that can be applied. 
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PROBLEMS 
 

16-1 Repeat Example 16-1 if the current waveform is a rectangular pulse, as 

shown in Fig. 16-13c. 
 

SIMULATION PROBLEMS 
 

Model a single-phase diode bridge rectifier shown in Fig. 16-8 with the 

following nominal values: sV  (rms) = 120V at 60 Hz, sL  = 1 mH, sR  = 1 

m Ω , dC  = 1,000 Fµ , and eqR  = 20 Ω .  Answer the following questions: 
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16-2 From the results of the Fourier analysis contained in the output file of the 

simulation, calculate the input power factor and the displacement power 

factor. 

16-3 Plot si , 1si , 3si  and 5si .  Superimpose the distortion current component 

distortioni  on this plot. 

16-4 Calculate capI  (the rms current though the filter capacitor) as a ratio of the 

average load current dI . 

16-5 Vary sL  to investigate its influence on the input displacement power 

factor, the input power factor, %THD, and the peak-peak ripple in the dc 

voltage dv . 

16-6 Vary the filter capacitor dC  to investigate its influence on the percentage 

ripple in dv , input displacement power factor and %THD.  Plot the 

percentage dV∆  (peak-to-peak)/ dV  (average) as a function of dC . 

16-7 Vary the load power to investigate its influence on the average dc voltage. 

16-8 Obtain the sv , si  and dv  waveforms during the start-up transient when the 

filter capacitor is initially not charged.  Obtain the peak inrush current as a 

ratio of the peak current in steady state.  Vary the switching instant by 

simply varying the phase angle of the source voltage sv . 

16-9 For the following design specifications, calculate the capacitance of the 

filter capacitor: sV = 120 V (nominal) +/- 10% at 60 Hz, maxP  = 1 kW, sL  = 

1 mH, and maximum dV∆  (peak-peak) < 10 V. 

 

Model the three-phase diode-bridge rectifier shown in Fig. 16-12a, with 

the following nominal values: LLV (rms) = 208 V at 60 Hz, sL  = 0.1 mH, 

dC  = 500 Fµ , and eqR  = 16.5 Ω .  Answer the following questions: 

 

16-10 By means of Fourier analysis of ai , calculate its harmonic components as 

a ratio of 1aI . 

16-11 Calculate aI , 1aI , disI , %THD in the input current, the input displacement 

power factor, and the input power factor.  How do your results compare 
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with the 1-phase diode-bridge rectifier, whose modeling was performed 

earlier? 

16-12 Calculate capI  (the rms current through the filter capacitor) as a ratio of 

the average load current loadI .  How do your results compare with those 

for the 1-phase diode-bridge rectifier, whose modeling was performed 

earlier? 

16-13 Investigate the influence of dL  on the input displacement power factor, 

the input power factor, and the average dc voltage dV .  Suggested range of 

dL :  0.1 mH to 10 mH. 

16-14 Investigate the influence of dC  on the percent ripple in dv .  Plot the 

percentage dV∆  (peak-to-peak)/ dV  (average) as a function of dC .  

Suggested range of dC : 100 Fµ  to 2,000 Fµ . 

16-15 Investigate the influence of dC  on the input displacement power factor 

and the input power factor.  Suggested range of dC :  100 Fµ  to 2,000 

Fµ . 

16-16 Plot the average dc voltage as a function of load.  Suggested range of eqR : 

8 to 50 Ω . 

 

Model the single-phase thyristor converter shown in Fig. 16-20, where the 

ac-side inductance is the sum of the internal source inductance 1sL  = 0.2 

mH and an externally added inductance 2sL =1.0 mH.  The dc-side 

consists of a series connection of dL  = 20 mH and eqR  = 20 Ω .  sV  (rms) 

= 120 V at 60 Hz ���� � ���� ����	� �
���� α = 045 .  Answer the following 

questions: 

 

16-17 From the plots, obtain the commutation interval u and the dc-side current 

at the start of the commutation. 

16-18 By means of Fourier analysis of si , calculate its harmonic components as 

a ratio of 1sI . 

16-19 Calculate sI , %THD in the input current, the input displacement power 

factor, and the input power factor. 
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16-20 At the point of common coupling, obtain the following from the voltage 

PCCv  waveform: (a) line-notch depth, (b) line-notch area, and (c) voltage 

%THD. 

 

Model the three-phase thyristor converter shown in Fig. 16-25a, where the 

ac-side inductance is the sum of the internal source inductance 1sL = 0.2 

mH, and an externally added inductance 2sL =1.0 mH.  The dc-side 

consists of a series connection of dL  = 16 mH, and eqR  = 8 Ω .  LLV (rms) 

= 208 V at 60 Hz.  The delay angle α = 045 .  Answer the following 

questions: 

 

16-21 By means of Fourier analysis of si , calculate its harmonic components as 

a ratio of 1sI . 

16-22 Calculate sI , %THD in the input current, the input displacement power 

factor, and the input power factor. 

16-23 At the point of common coupling, obtain the following from the voltage 

pccv  waveform: (a) line-notch depth, (b) line-notch area, and (c) voltage 

%THD. 



 17-1 

CHAPTER  17 
 

ANCILLARY ISSUES IN 
DRIVES: SENSORS, ASICs, 
AND MICRO-
CONTROLLERS 
 
 

17-1 INTRODUCTION 
 

This chapter briefly describes various subsystems that are essential in a drive 

system, but which have not been discussed.  This chapter is by no means 

complete; rather, it is intended be a “roadmap” to a wealth of information found 

in manufacturers’ websites regarding product specifications and application notes 

on sensors, application-specific ICs (ASICs), and micro-controllers.  A very small 

fraction of these websites is listed at the end of this chapter. 

 

17-2 SENSORS 
 
Sensors are an essential part of any feedback control system because they provide 

both control and protection.  In connection with drive systems, we will look at 

current, speed, and position sensors. 

 

17-2-1 Current Sensors 
 

Current sensors are available from various manufacturers.  Most current sensors 

utilize the Hall-Effect principle and produce an isolated voltage output (isolated 

from the circuit in which the current is measured) which is proportional to the 

current.  These current sensors can measure currents from dc to a large 

bandwidth, extending into several tens of kHz.  They are described in some detail 

in Reference [1]; the product information can be found on websites [2] and [3]. 
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17-2-2 Speed and Position Sensors 
 

Sensors are needed to measure speed and position in the feedback controllers of 

drives.  In modern drive systems, these sensors either utilize the Hall-Effect 

principle, the optical principle, or the magnetic principle. 

 

17-2-2-1 Position Sensors for Commutation in ECM Drives 
 

These are low-resolution sensors.  As discussed in Chapter 7, Electronically-

Commutated Motor (ECM) drives require that, every 60 degrees of rotation, the 

current be switched to the two appropriate windings in the three-phase motor.  

Commonly, a magnetic rotor and three Hall-Effect sensors are used to detect each 

60-degree zone that the rotor is in.  Alternatively, a toothed disk (coupled to the 

motor shaft) can be made to rotate, interrupting the light emitted by LEDs and 

resulting in a digital signal that indicates the direction of the rotation.   

 

17-2-2-2 Incremental Encoders 
 

Incremental encoders are the most commonly used sensors for measuring position 

and speed.  They often operate on the optical principle, but magnetic incremental 

encoders are also available. 

 

The schematic of an optical, incremental encoder is shown in Fig. 17-1.  In such 

an encoder, a lens collimates the light from an LED, which passes through a 

coded wheel (which is slotted and fastened to the rotor shaft) and a stationary 

aperture plate.  It is then detected by a light-receiver.  As the coded wheel rotates, 

square pulses shaped by the light-receiver circuit are produced.  Each pulse 

represents an incremental rotation by a specified amount.  By counting these 

pulses, it is possible to determine the change in position.  Also, by counting the 

number of pulses produced per second, and by knowing the number of pulses (or 

lines) per revolution associated with the sensor, it is possible to calculate the rotor 

speed.   

 

Another series of pulses is generated at a 90-degree phase-shift with respect to the 

first channel.  These two channels allow the direction of rotation to be 
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determined.  The third series of pulses is called the marker pulse, and occurs once 

every cycle of rotation.  It establishes the “home position,” beyond which the 

incremental encoder produces information about the absolute position.   

 

The rotating coded wheel usually consists only of a glass disc, and therefore adds 

very little inertia.  These encoders are commonly available from a few hundred to 

a few thousand lines per revolution, though higher resolutions extending to 

100,000 lines per revolution can be achieved by utilizing lasers.  Information 

regarding incremental encoders can be found on websites [3], [4], and [5]. 

 

17-2-2-3 Absolute Position Encoders and Resolvers 
 

In the PMAC drives discussed in Chapter 10, the absolute position of the rotor is 

needed.  This can be provided by the optical principle using a rotating disk, 

featuring multiple tracks of patterns and multiple LEDs and receivers.  The digital 

output from these multiple receivers is combined to form a distinct “word” for 

each position of the shaft.  Information about these absolute encoders can be 

found on websites [4] and [5]. 

 

Another way of detecting the absolute position is by using resolvers.  These are 

sophisticated magnetic devices in which the rotor, as shown schematically in Fig. 

17-2, is coupled to the motor shaft and is supplied (either through slip-rings or by 

a rotating transformer) by a sinusoidal voltage at a high frequency rf , usually in 

the range of one to five kHz.  The stator consists of two sinusoidally-distributed 

windings which are spatially 90-degrees out-of-phase with respect to each other.  

As the rotor turns, the outputs of the stator windings are amplitude-modulated 

Light-
reciever
circuitLED

Lens Rotating
coded wheel
with slots

Stationary
aperture
plate

Figure 17-1 Optical incremental encoder. 
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sine waves, which are modulated proportional to the sine and the cosine, 

respectively of the rotor angle mθ  as follows: 

 

 sin(2 ) sinA r mv A f tπ θ= ⋅       (17-1) 

and 

 sin(2 ) cosB r mv A f tπ θ= ⋅       (17-2) 

 

where A  is a constant amplitude. 

 

This information from the electro-mechanical portion of the resolver is processed 

in a resolver-to-digital converter IC.  If α  is an estimate of the rotor position 

(with the objective of forcing α  to become equal to the actual value mθ ), the 

input voltages Av  and Bv  to the converter IC are multiplied by the cosine and the 

sine of the estimated angle: 

 

 cos sin(2 ) sin cosA r mv A f tα π θ α= ⋅ ⋅      (17-3) 

and 

 sin sin(2 ) cos sinB r mv A f tα π θ α= ⋅ ⋅      (17-4) 

 

Subtracting Eq. 17-4 from Eq. 17-3 results in the error: 

 

 
sin(2 ) (sin cos cos sin )

sin(2 ) sin( )
r m m

r m

error A f t

A f t

π θ α θ α
π θ α

= ⋅ −
= ⋅ −

   (17-5) 

 

mθ

Av

Bv

rotor

Figure 17-2 Resolver for position sensing. 

rat f
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The error in Eq. 17-5 is proportional to sin( )mθ α− , which is used to modify the 

estimate α , until the error goes to zero and the estimate is equal to the actual 

angle - that is, mα θ= .  In addition to giving absolute position information, 

resolvers also deliver speed information.  Resolvers are available in a wide range 

of resolutions; further information can be found on website [6]. 

 

17-3 APPLICATION-SPECIFIC ICs (ASICs) 
 
Over the years, several application-specific ICs have become available to control 

the switch-mode converters for dc-, ECM, PMAC, induction- and stepper-motor 

drives.  The advantage of ASICs is that they contain many functions, such as 

protection.  The drawback of ASICs, however, can be their lack of flexibility.  

Information about these ICs can be found on website [3].  An ASIC for induction-

motor control is described in Reference [1]. 

 

17-4 MICRO-CONTROLLERS AND FPGAs 
 

Most modern drives are digitally controlled.  Micro-controllers, specially 

designed to make motion control easy, are available from a variety of sources, 

such as [7], [8], and [9].  It is possible to parcel some of their logic functions to 

hardware outside of the micro-controller, thus speeding up the computation cycle 

time.  This hardware function can be performed in Field-Programmable Gate 

Arrays (FPGAs) [10], which can be programmed in a higher-level language [11]. 

 

17-5 RAPID-PROTOTYPING TOOLS 
 

Rapid-prototyping tools have been developed for testing digital control designs 

quickly.  One such system, available from [12], allows the controller to be 

designed in a commonly used control software SIMULINK, available from 

[13].  Once this controller is designed, the code is simply generated and loaded 

into the micro-controller for real-time control, thus allowing the control algorithm 

to be tested rapidly.  After the control design is finalized, it can be implemented 

into a micro-controller by traditional means.  Such rapid-prototyping tools also 

provide an excellent means for developing micro-controller-based, software re-

configurable hardware laboratories for educational purposes. 
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SUMMARY/REVIEW QUESTIONS 
 

1. What types of sensors are generally needed? 

2. What are ASICs? 

3. What are micro-controllers and FPGAs? 

4. What are the advantages of rapid-prototyping tools? 
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